Question

In: Chemistry

a solution is made by dissolving 0.131 mol of sugar,C12H22O11, in 175 g of water. the...

a solution is made by dissolving 0.131 mol of sugar,C12H22O11, in 175 g of water. the amount by which the vapor pressure is lowered is? (The vapor pressure of water is 23.76 mm Hg at 25 degrees Celcius.

please explain: thank you!

Answers:

A) 23.00 mm Hg

B) 0.316 mm Hg

C) 17.8 mm Hg

D) 3.11 mm Hg

E) 1.33 mm Hg

Solutions

Expert Solution

Answer - We are given the, moles of sugar = 0.131 moles

Mass of water = 175 g , vapor pressure of water = 23.76 mm Hg

First we need to calculate the moles of water

Moles of water = 175 g / 18.015 g.mol-1

                        = 9.71 moles

Total moles = 9.71 +0.131 moles

                    = 9.84 moles

Mole fraction of water = 9.71 moles / 9.84 moles = 0.987

So, the partial pressure of water vapor = 23.76 mm Hg*0.987

                                                              = 23.44 mm Hg

So the vapor pressure is lowered = 23.76 -23.44

                                                      = 0.316 mm Hg


Related Solutions

A) A solution is prepared by dissolving 50.7 g sucrose (C12H22O11) in 0.423 kg of water....
A) A solution is prepared by dissolving 50.7 g sucrose (C12H22O11) in 0.423 kg of water. The final volume of the solution is 355 mL. 1) For this solution, calculate molarity. 2) For this solution, calculate molality. 3) For this solution, calculate percent by mass. 4) For this solution, calculate mole fraction. B) Calculate the vapor pressure at 25 ∘C of a solution containing 55.2 g ethylene glycol (HOCH2CH2OH) and 286.6 g water. The vapor pressure of pure water at...
A solution is prepared by dissolving 50.7 g sucrose (C12H22O11) in 0.394 kg of water. The...
A solution is prepared by dissolving 50.7 g sucrose (C12H22O11) in 0.394 kg of water. The final volume of the solution is 355 mL. calculate: a- molarity b- molality c- percent by mass d- mole fraction
A solution is prepared by dissolving 50.8 g sucrose(C12H22O11) in 0.387 kg of water. The final...
A solution is prepared by dissolving 50.8 g sucrose(C12H22O11) in 0.387 kg of water. The final volume of the solution is 355 mL. For this solution, calculate molarity. For this solution, calculate molality. For this solution, calculate percent by mass. For this solution, calculate mole fraction.
A solution is made by dissolving 0.0100 mol of HF in 1.00 kg of water. The...
A solution is made by dissolving 0.0100 mol of HF in 1.00 kg of water. The solution was found to freeze at –0.0236 °C. Calculate the value of i and estimate the percent ionization of HF in this solution. i =____ so HF is ______
A solution is made by dissolving 0.0100 mol of HF in 1.00 kg of water. The...
A solution is made by dissolving 0.0100 mol of HF in 1.00 kg of water. The solution was found to freeze at –0.0236 °C. Calculate the value of i and estimate the percent ionization of HF in this solution. i =____ so HF is ______
A solution is made by dissolving 10.0 g of sodium chloride in 110.5 g of water...
A solution is made by dissolving 10.0 g of sodium chloride in 110.5 g of water at 25oC. The density of the solution is 1.021 g/mL 1.What is the osmotic pressure of this solution?    2.What is the boiling point of this solution?    3.What is the freezing point of this solution?
A solution is made by dissolving 0.531 mol of nonelectrolyte solute in 765 g of benzene....
A solution is made by dissolving 0.531 mol of nonelectrolyte solute in 765 g of benzene. Calculate the freezing point, Tf, and boiling point, Tb, of the solution.
A solution is made by dissolving 0.571 mol of nonelectrolyte solute in 815 g of benzene....
A solution is made by dissolving 0.571 mol of nonelectrolyte solute in 815 g of benzene. Calculate the freezing point, Tf, and boiling point, Tb, of the solution.
A solution is made by dissolving 0.674 mol of nonelectrolyte solute in 775 g of benzene....
A solution is made by dissolving 0.674 mol of nonelectrolyte solute in 775 g of benzene. Calculate the freezing point, Tf, and boiling point, Tb, of the solution. Constants may be found here.
A solution is made by dissolving 0.717 mol of nonelectrolyte solute in 817 g of benzene....
A solution is made by dissolving 0.717 mol of nonelectrolyte solute in 817 g of benzene. Calculate the freezing point, Tf, and boiling point, Tb, of the solution.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT