Question

In: Chemistry

A solution is made by dissolving 0.0100 mol of HF in 1.00 kg of water. The...

A solution is made by dissolving 0.0100 mol of HF in 1.00 kg of water. The solution was found to freeze at –0.0236 °C. Calculate the value of i and estimate the percent ionization of HF in this solution.

i =____ so HF is ______

Solutions

Expert Solution


Related Solutions

A solution is made by dissolving 0.0100 mol of HF in 1.00 kg of water. The...
A solution is made by dissolving 0.0100 mol of HF in 1.00 kg of water. The solution was found to freeze at –0.0236 °C. Calculate the value of i and estimate the percent ionization of HF in this solution. i =____ so HF is ______
a solution is made by dissolving 0.131 mol of sugar,C12H22O11, in 175 g of water. the...
a solution is made by dissolving 0.131 mol of sugar,C12H22O11, in 175 g of water. the amount by which the vapor pressure is lowered is? (The vapor pressure of water is 23.76 mm Hg at 25 degrees Celcius. please explain: thank you! Answers: A) 23.00 mm Hg B) 0.316 mm Hg C) 17.8 mm Hg D) 3.11 mm Hg E) 1.33 mm Hg
The pH of a solution prepared by dissolving 0.350 mol of acetic acid (CH3CO2H) in 1.00...
The pH of a solution prepared by dissolving 0.350 mol of acetic acid (CH3CO2H) in 1.00 L of water is 2.64. Determine the pH of the solution after adding 0.079 moles of sodium hydroxide (NaOH). The Ka for acetic acid is 1.75E-5 (Assume the final volume is 1.00L)
A buffer solution is prepared by dissolving 0.250 mol of solid methylamine hydrochloride (CH3NH3Cl) in 1.00...
A buffer solution is prepared by dissolving 0.250 mol of solid methylamine hydrochloride (CH3NH3Cl) in 1.00 L of 1.10 M methylamine (CH3NH2). The Kb for methylamine is 4.40x10-4. (Assume the final volume of the solution is 1.00 L). A) Write a balanced molecular, total ionic, and net ionic equation for the completion reaction that occurs when NaOH is added to this buffer. B) What is the pH of the solution when 100.0 mL of 1.15 M NaOH is added? (show...
A solution is made by dissolving 0.531 mol of nonelectrolyte solute in 765 g of benzene....
A solution is made by dissolving 0.531 mol of nonelectrolyte solute in 765 g of benzene. Calculate the freezing point, Tf, and boiling point, Tb, of the solution.
A solution is made by dissolving 0.571 mol of nonelectrolyte solute in 815 g of benzene....
A solution is made by dissolving 0.571 mol of nonelectrolyte solute in 815 g of benzene. Calculate the freezing point, Tf, and boiling point, Tb, of the solution.
A solution is made by dissolving 0.674 mol of nonelectrolyte solute in 775 g of benzene....
A solution is made by dissolving 0.674 mol of nonelectrolyte solute in 775 g of benzene. Calculate the freezing point, Tf, and boiling point, Tb, of the solution. Constants may be found here.
A solution is made by dissolving 0.717 mol of nonelectrolyte solute in 817 g of benzene....
A solution is made by dissolving 0.717 mol of nonelectrolyte solute in 817 g of benzene. Calculate the freezing point, Tf, and boiling point, Tb, of the solution.
A solution is made by dissolving 18.29g of glucose C6H12O2 in 50mL of water at 25C...
A solution is made by dissolving 18.29g of glucose C6H12O2 in 50mL of water at 25C Calculate the molality,molarity, percent mass, Assume density of water is 1.00g/ml
A solution was made by dissolving 5.50 mg of hemoglobin in water to give a final...
A solution was made by dissolving 5.50 mg of hemoglobin in water to give a final volume of 1.00 mL. The osmotic pressure of this solution was 2.10×10-3 atm at 25.0°C.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT