In: Electrical Engineering
Design an experiment setup for determination the time constant of a thermistor?
Thermistors are very accurate thermal transducers, indicating temperature through their resistance. Using them as a sensor, one measures the temperature by simply applying a voltage, measuring the current, and translating the resistance into a temperature. However, thermistors can also act as variable resistors in a circuit, affecting behavior through increases or decreases in resistance, depending on whether the temperature coefficient is positive or negative.
The response to temperature changes take time, and the principal parameter measuring this response is the thermal time constant (TTC). The materials and assembly of a thermistor have a critical impact on the TTC, so a team of engineers at Ametherm ran a number of experiments to show just how much the TTC can vary. Used in an application, we will then see just what kind of impact the TTC can have.
Construction Impacts the TTC
A thermistor consists of a resistive element that absorbs heat as it changes temperature. The response time is due to both the specific heat of the mass and the thermal conductivity of the mass and anything surrounding the mass. Commonly made of sintered ceramics, the masses or the element can also be made of silicon.
The TTC is an intrinsic device property that is independent of the rate of ambient change. When measuring the TTC, you need to apply a temperature change, but if that change is too slow then you're measuring the rate of change of ambient temperature, not the transducer's response. So it's important to use a temperature change that's as close to instantaneous as possible.
The response rate changes throughout the response, slowing down quasi-asymptotically as the device approaches steady state at a new temperature. Waiting until true steady state has been achieved would make for a difficult measurement to standardize, so the TTC is instead defined as the time it takes for the temperature to reach 1/e, or just over 63% of the full transition (see figure 1).
Fig. 1: The TTC measures response at 63.2% of the transition.
The blue curve shows a cold-to-hot transition, and the green curve
shows a hot-to-cold transition.
There are several variables that affect the TTC: