Question

In: Physics

The work function of a metal is 3.0eV. What is the maximum wavelength of the incident...

The work function of a metal is 3.0eV. What is the maximum wavelength of the incident light to obtain photoelectric electrons from this metal?

663nm

1240nm

414nm

138nm

Solutions

Expert Solution


Related Solutions

A beam of wavelength 310 nm from a laser is incident on a metal with work...
A beam of wavelength 310 nm from a laser is incident on a metal with work function 2.7 eV. The power of the laser is 0.15 W. (a) Does the metal emit photoelectrons? Why? (b) What is the range of photoelectron kinetic energies emitted by metal? (c) What is the range of de Broglie wavelengths of these photoelectons? (d) How does result for part (b) change if the laser power is doubled to 0.30 W? Thank you.
When light of wavelength 400 nm is incident on a metal surface, the stopping potential of...
When light of wavelength 400 nm is incident on a metal surface, the stopping potential of the photoelectrons is 0.600 V. a. What is the work function of the metal? b. What is the threshold frequency? c. What is the maximum kinetic energy of the electron?
When light with a wavelength of 247 nm is incident on a certain metal surface, electrons...
When light with a wavelength of 247 nm is incident on a certain metal surface, electrons are ejected with a maximum kinetic energy of 2.84 × 10-19 J. Determine the wavelength (in nm) of light that should be used to double the maximum kinetic energy of the electrons ejected from this surface.
A laser of wavelength 200 nm is incident on a metal surface, which causes the ejection...
A laser of wavelength 200 nm is incident on a metal surface, which causes the ejection of electrons. The stopping potential is measured to be 1.66 V. Use the table below to identify the metal. Copper Sodium Aluminum Iron Tungsten
When light with a wavelength of 215 nm is incident on a certain metal surface, electrons...
When light with a wavelength of 215 nm is incident on a certain metal surface, electrons are ejected with a maximum kinetic energy of 3.33 × 10 − 19 J. Determine the wavelength of light that should be used to quadruple the maximum kinetic energy of the electrons ejected from this surface.
A light source of wavelength λ illuminates a metal and ejects photoelectrons with a maximum kinetic...
A light source of wavelength λ illuminates a metal and ejects photoelectrons with a maximum kinetic energy of 1.12 eV. A second light source of wavelength λ/2 ejects photoelectrons with a maximum kinetic energy of 3.60 eV. What is the work function of the metal? ____ eV
What is the wavelength of the maximum absorbance of the nanoparticles? To what colour of visible...
What is the wavelength of the maximum absorbance of the nanoparticles? To what colour of visible light does this correspond? Estimate a size for the gold nanoparticles formed.
what is the effect of pH on fluorescence intensity and wavelength maximum for fluorescein
what is the effect of pH on fluorescence intensity and wavelength maximum for fluorescein
The work function for silver is 4.7 eV. (a) Find the threshold frequency and wavelength for...
The work function for silver is 4.7 eV. (a) Find the threshold frequency and wavelength for the photoelectric effect to occur when monochromatic electromagnetic radiation is incident on the surface of a sample of silver. Hz nm (b) Find the maximum kinetic energy of the electrons if the wavelength of the incident light is 180 nm.   eV (c) Find the maximum kinetic energy of the electrons if the wavelength of the incident light is 240 nm. eV
Barium has a work function of 2.48 eV. What is the maximum kinetic energy of electrons...
Barium has a work function of 2.48 eV. What is the maximum kinetic energy of electrons if the metal is illuminated by UV light of wavelength 420 nm? eV What is their speed? m/s
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT