Question

In: Statistics and Probability

Let g(x) be a function so that the following covariance and expectations are finite numbers. Show...

Let g(x) be a function so that the following covariance and expectations are finite numbers. Show that

cov [g(U), g(1 − U)] = (1/2) E {[g(U1) − g(U2)][g(1 − U1) − g(1 − U2)]} ,

where U ∼ U(0, 1), U1 and U2 are iid U(0, 1). Note you need the fact about the independences of U1 & 1 − U2 as well as 1 − U1 & U2 to show the above identity.

Solutions

Expert Solution


Related Solutions

(a) Let G and G′ be finite groups whose orders have no common factors. Show that...
(a) Let G and G′ be finite groups whose orders have no common factors. Show that the only homomorphism φ:G→G′ is the trivial one. (b) Give an example of a nontrivial homomorphism φ for the given groups, if an example exists. If no such homomorphism exists, explain why. i.φ: Z16→Z7 ii.φ: S4→S5
Let G be a finite group and H a subgroup of G. Let a be an...
Let G be a finite group and H a subgroup of G. Let a be an element of G and aH = {ah : h is an element of H} be a left coset of H. If b is an element of G as well and the intersection of aH bH is non-empty then aH and bH contain the same number of elements in G. Thus conclude that the number of elements in H, o(H), divides the number of elements...
Let X and Y be random variables with finite means. Show that min g(x) E(Y−g(X))^2=E(Y−E(Y|X))^2 Hint:...
Let X and Y be random variables with finite means. Show that min g(x) E(Y−g(X))^2=E(Y−E(Y|X))^2 Hint: a−b = a−c+c−b
Let g be the function defined by g(x) = x(x + 1). Find g(x + h)...
Let g be the function defined by g(x) = x(x + 1). Find g(x + h) − g(x − h).
Let a be an element of a finite group G. The order of a is the...
Let a be an element of a finite group G. The order of a is the least power k such that ak = e. Find the orders of following elements in S5 a. (1 2 3 ) b. (1 3 2 4) c. (2 3) (1 4) d. (1 2) (3 5 4)
Let (G,·) be a finite group, and let S be a set with the same cardinality...
Let (G,·) be a finite group, and let S be a set with the same cardinality as G. Then there is a bijection μ:S→G . We can give a group structure to S by defining a binary operation *on S, as follows. For x,y∈ S, define x*y=z where z∈S such that μ(z) = g_{1}·g_{2}, where μ(x)=g_{1} and μ(y)=g_{2}. First prove that (S,*) is a group. Then, what can you say about the bijection μ?
(a) Let G be a finite abelian group and p prime with p | | G...
(a) Let G be a finite abelian group and p prime with p | | G |. Show that there is only one p - Sylow subgroup of G. b) Find all p - Sylow subgroups of (Z2500, +)
Let G(x,t) be the Green's function satisfying           G"(x,t) + G(x,t) = δ(x-t) with G(0,t) =...
Let G(x,t) be the Green's function satisfying           G"(x,t) + G(x,t) = δ(x-t) with G(0,t) = 0 and G(pi/2) = 0, and the neccessary continuity conditions. Here t is fixed, 0 < t < pi/2; the derivative means differentiation with respect to x, 0 < x < pi/2 Fill in the blanck: G(x,t)=                                                   when 0<x<t                                                              when t<x<pi/2
Let G act transitively on Ω and assume G is finite. Define an action of G...
Let G act transitively on Ω and assume G is finite. Define an action of G on the set Ω × Ω by putting (α,β) · g = (α · g, β · g). Let α ∈ Ω Show that G has the same number of orbits on Ω × Ω That Gα has on Ω
Throughout this question, let G be a finite group, let p be a prime, and suppose...
Throughout this question, let G be a finite group, let p be a prime, and suppose that H ≤ G is such that [G : H] = p. Let G act on the set of left cosets of H in G by left multiplication (i.e., g · aH = (ga)H). Let K be the set of elements of G that fix every coset under this action; that is, K = {g ∈ G : (∀a ∈ G) g · aH...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT