Question

In: Statistics and Probability

%Lysis COMP 250 COMP 100 COMP 20 n=1 87.77 81.73 65.8 n=2 81.71 50.45 63.7 n=3...

%Lysis

COMP 250

COMP 100

COMP 20

n=1

87.77

81.73

65.8

n=2

81.71

50.45

63.7

n=3

86.64

55.38

59.4

n=4

90.03

82.39

71.67

AVERAGE

87.5

68.4

66.1

STD DEV

4.0

15.6

5.4

SEM

2.5

8.3

3.2

4.Perform a t-test comparing COMP250 to COMP100 and COMP250 to COMP20. A p value when p<0.05 is statistically significant and p value when p>0.05 is not significant. Include all p values and comment on their significance.

5. In your discussion briefly comment on the following:

Which amount (μl) of complement gives the highest and lowest degree of lysis?

Discuss variability between the experiments?

What do you think is the reason for variability in this experiment

Solutions

Expert Solution

4)

t-test comparing COMP250 to COMP100

Ho :   µ1 - µ2 =   0                  
Ha :   µ1-µ2 ╪   0                  
                          
Level of Significance ,    α =    0.05                  
                          
Sample #1   ---->   sample 1                  
mean of sample 1,    x̅1=   87.50                  
standard deviation of sample 1,   s1 =    4.00                  
size of sample 1,    n1=   4                  
                          
Sample #2   ---->   sample 2                  
mean of sample 2,    x̅2=   68.40                  
standard deviation of sample 2,   s2 =    15.60                  
size of sample 2,    n2=   4                  
                          
difference in sample means =    x̅1-x̅2 =    87.5000   -   68.4   =   19.10  
                          
pooled std dev , Sp=   √([(n1 - 1)s1² + (n2 - 1)s2²]/(n1+n2-2)) =    11.3877                  
std error , SE =    Sp*√(1/n1+1/n2) =    8.0523                  
                          
t-statistic = ((x̅1-x̅2)-µd)/SE = (   19.1000   -   0   ) /    8.05   =   2.372
                          
Degree of freedom, DF=   n1+n2-2 =    6                  

p-value =        0.0554 (excel function: =T.DIST.2T(t stat,df) )              
Conclusion:     p-value>α , Do not reject null hypothesis  

not significant

.................

COMP250 to COMP20

Ho :   µ1 - µ2 =   0                  
Ha :   µ1-µ2 ╪   0                  
                          
Level of Significance ,    α =    0.05                  
                          
Sample #1   ---->   sample 1                  
mean of sample 1,    x̅1=   87.50                  
standard deviation of sample 1,   s1 =    4.00                  
size of sample 1,    n1=   4                  
                          
Sample #2   ---->   sample 2                  
mean of sample 2,    x̅2=   66.10                  
standard deviation of sample 2,   s2 =    5.40                  
size of sample 2,    n2=   4                  
                          
difference in sample means =    x̅1-x̅2 =    87.5000   -   66.1   =   21.40  
                          
pooled std dev , Sp=   √([(n1 - 1)s1² + (n2 - 1)s2²]/(n1+n2-2)) =    4.7518                  
std error , SE =    Sp*√(1/n1+1/n2) =    3.3601                  
                          
t-statistic = ((x̅1-x̅2)-µd)/SE = (   21.4000   -   0   ) /    3.36   =   6.369
                          
Degree of freedom, DF=   n1+n2-2 =    6                  
  
p-value =        0.000704   (excel function: =T.DIST.2T(t stat,df) )              
Conclusion:     p-value <α , Reject null hypothesis  

SIGNIFICANT

..................

5)

COMP250 gives the highest degree of lysis (90.03)

COMP100 gives lowest degree of lysis (50.45)

There is variability between the experiments as shown in the above t test

the result of t test is significant showing the variability

thanks  
you did not provide complete question still i tried so revert back for doubt



Related Solutions

Show that (a)Sn=<(1 2),(1 3),……(1 n)>. (b)Sn=<(1 2),(2 3),……(n-1 n)> (c)Sn=<(1 2),(1 2 …… n-1 n)>
Show that (a)Sn=<(1 2),(1 3),……(1 n)>. (b)Sn=<(1 2),(2 3),……(n-1 n)> (c)Sn=<(1 2),(1 2 …… n-1 n)>
Prove that 1^3 + 2^3 + · · · + n^3 = (1 + 2 +...
Prove that 1^3 + 2^3 + · · · + n^3 = (1 + 2 + · · · + n)^2 for every n ∈ N. That is, the sum of the first n perfect cubes is the square of the sum of the first n natural numbers. (As a student, I found it very surprising that the sum of the first n perfect cubes was always a perfect square at all.)
3. The Hofstadter Conway sequence is defined by a(1)=a(2)=1 and (for n>2 by) a(n)=a(a(n-1))+a(n-a(n-1)). Write a...
3. The Hofstadter Conway sequence is defined by a(1)=a(2)=1 and (for n>2 by) a(n)=a(a(n-1))+a(n-a(n-1)). Write a function to quickly compute this sequence. >>> [hc(i) for i in range(1,20)] [1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, 8, 8, 8, 8, 9, 10, 11]
Which codes add 1 to integer n? 1) n=n+1; 2) n++; 3)++n; 4) n+=1; 5) n=--n+2
Which codes add 1 to integer n? 1) n=n+1; 2) n++; 3)++n; 4) n+=1; 5) n=--n+2
(a) Find the limit of {(1/(n^(3/2)))-(3/n)+2} and use an epsilon, N argument to show that this...
(a) Find the limit of {(1/(n^(3/2)))-(3/n)+2} and use an epsilon, N argument to show that this is indeed the correct limit. (b) Use an epsilon, N argument to show that {1/(n^(1/2))} converges to 0. (c) Let k be a positive integer. Use an epsilon, N argument to show that {a/(n^(1/k))} converges to 0. (d) Show that if {Xn} converges to x, then the sequence {Xn^3} converges to x^3. This has to be an epsilon, N argument [Hint: Use the difference...
100 g of ice at -20°C are mixed with 250 g of water at 20°C in...
100 g of ice at -20°C are mixed with 250 g of water at 20°C in an insulated calorimeter. What is the final temperature of the system? How many grams of liquid water and how many grams of ice will you find after the system equilibrates? find T in degrees C; m of solid (in grams); m of liquid (in grams) T=____ ms=____ mliq=____
Use Java for the following; Part 1 n!= n * (n –1)* (n–2)* ...* 3 *...
Use Java for the following; Part 1 n!= n * (n –1)* (n–2)* ...* 3 * 2 * 1 For example, 5! = 5 * 4 * 3 * 2 * 1 = 120 Write a function called factorial that takes as input an integer. Your function should verify that the input is positive (i.e. it is greater than 0). Then, it should compute the value of the factorial using a for loop and return the value. In main, display...
Write a combinatorial proof for 1 n + 2 ( n − 1 ) + 3...
Write a combinatorial proof for 1 n + 2 ( n − 1 ) + 3 ( n − 2 ) + ⋯ + ( n − 1 ) 2 + n 1 = ( n + 2 choose 3 ) .
convergent or divergent infinity sigma n = 1 sqrt(n^5+ n^3 -7) / (n^3-n^2+n)
convergent or divergent infinity sigma n = 1 sqrt(n^5+ n^3 -7) / (n^3-n^2+n)
If S = 1-x/1! + x^2/2! - x^3/3! + .....   where n! means factorial(n) and x...
If S = 1-x/1! + x^2/2! - x^3/3! + .....   where n! means factorial(n) and x is a variable that will be assigned. Use matlab to compute S for x = 7 and n (number of terms) = 5.   Write the value below as the one displayed when you issue "format short" in matlab. Explain the process and result of the question.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT