In: Finance
Consider four different stocks, all of which have a required return of 18.75 percent and a most recent dividend of $3.20 per share. Stocks W, X, and Y are expected to maintain constant growth rates in dividends for the foreseeable future of 10 percent, 0 percent, and –5 percent per year, respectively. Stock Z is a growth stock that will increase its dividend by 20.75 percent for the next two years and then maintain a constant 12 percent growth rate, thereafter. What is the price for each of these four stocks?
Stock W: | |||||||
Price of stock | = | D0*(1+g)/(Ke-g) | Where, | ||||
= | 3.20*(1+0.10)/(0.1875-0.10) | D0 | = | $ 3.20 | |||
= | $ 40.23 | g | = | 10% | |||
Ke | = | 18.75% | |||||
Stock X: | |||||||
Price of stock | = | D0*(1+g)/(Ke-g) | Where, | ||||
= | 3.20*(1+0.00)/(0.1875-0.00) | D0 | = | $ 3.20 | |||
= | $ 17.07 | g | = | 0% | |||
Ke | = | 18.75% | |||||
Stock Y: | |||||||
Price of stock | = | D0*(1+g)/(Ke-g) | Where, | ||||
= | 3.20*(1-0.05)/(0.1875+0.05) | D0 | = | $ 3.20 | |||
= | $ 12.80 | g | = | -5% | |||
Ke | = | 18.75% | |||||
Stock Z: | |||||||
Price of dividend of next 2 years: | |||||||
Year | Dividend | Discount factor | Present Value | ||||
a | b | c=1.1875^-a | d=b*c | ||||
1 | $ 3.86 | 0.842105 | $ 3.25 | ||||
2 | $ 4.67 | 0.709141 | $ 3.31 | ||||
Total | $ 6.56 | ||||||
Present Value of dividend s aftr year 2 | = | D2*(1+g)/(Ke-g)*DF2 | Where, | ||||
= | $ 54.90 | D2 | = | $ 4.67 | |||
g | = | 12% | |||||
Ke | = | 18.75% | |||||
DF2 | = | 0.709141 | |||||
Sum of present value of dividends | = | $ 6.56 | + | $ 54.90 | |||
= | $ 61.46 | ||||||
So, Price of Stock Z | = | $ 61.46 |