In: Physics
two balls, ball 1 and ball 2are about collide heads on a frictionless linear track. Ball 1 is traveling east with a speed 8m/s toward ball 2. Ball 2 has a speed of 4 m/s. If the mass of the ball 2 is 8 times the mass of ball 1 what is the speed of ball 2 after the collision? We asume that the collision id perfectly elastic
a)
m1 = mass of ball 1 = m
m2 = mass of ball 2 = 8 m
v1i = initial velocity of ball 1 before collision = 8 m/s
v2i = initial velocity of ball 2 before collision = - 4 m/s
v1f = final velocity of ball 1 after collision
v2f = fina velocity of ball 2 after collision
using conservation of momentum
m1 v1i + m2 v2i = m1 v1f + m2 v2f
m (8) + (8m) (-4) = m v1f + (8m) v2f
- 24 = v1f + 8 v2f
v1f = - 24 - 8 v2f Eq-1
Using conservation of kinetic energy
m1 v21i + m2 v22i = m1 v21f + m2 v22f
m (8)2 + (8m) (-4)2= m v21f + (8m) v22f
(8)2 + (8) (-4)2= v21f + (8) v22f
using eq-1
(8)2 + (8) (-4)2= (- 24 - 8 v2f )2 + (8) v22f
v2f = - 1.33 m/s
speed = 1.33 m/s