Question

In: Other

Steam flows steadily through a turbine at a rate of 12,550 kg/h, entering at 7 MPa...

Steam flows steadily through a turbine at a rate of 12,550 kg/h, entering at 7 MPa and 500oC, state 1 and leaving at 50 kPa as saturated vapor, state 2. The power generated by the turbine is 6.2 MW. Determine (a) the quality I % at the exit and (b) the heat transfer in kJ/sec with direction.

Solutions

Expert Solution


Related Solutions

Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 4 MPa,...
Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 4 MPa, 500°C and 80 m/s, and the exit conditions are 30 kPa, 92% quality and 50 m/s. The mass flowrate of the steam is 12 kg/s. Investigate the effect of the turbine exit pressure on the power output of the turbine. Let the exit pressure vary from 10 to 200 kPa. Plot (1) T2 vs P2 and 2) Plot the power output (W_dot_T in MW)...
3) Air flows steadily at the rate of 0.4 kg/s through an air compressor, entering at...
3) Air flows steadily at the rate of 0.4 kg/s through an air compressor, entering at 6 m/s with a pressure of 1 bar and a specific volume of 0.85 m3/kg, and leaving at 4.5 m/s with       a pressure of 6.9 bar and a specific volume of 0.16 m3/kg. The internal energy of air leaving is 88 kJ/kg greater than that of the air entering. Cooling water in a jacket surrounding the cylinder absorbs heat from the air at...
Steam at 400°C and 40 bar flows steadily through an adiabatic turbine at a volumetric flowrate...
Steam at 400°C and 40 bar flows steadily through an adiabatic turbine at a volumetric flowrate of 5,000 m3/h. The steam leaving the turbine at 1 bar is then cooled at constant pressure in a condenser to 25°C. The rate of transfer from the condenser is 50 MW. Calculate the power output generated by the turbine (MW). Clearly state assumptions (if any) and reference state.
The steady flow rate of steam through an adiabatic turbine is 2.5 kg/s . The steam...
The steady flow rate of steam through an adiabatic turbine is 2.5 kg/s . The steam at 600 oc and 10 bar enters the turbine through pipeline 10 cm in diameter. The steam exits the turbine through at pipeline 25 cm in diameter at a temperature 400 oc and pressure of 1 bar. State the steady flow energy equation At the inlet conditions of the turbine, obtain from steam tables                 The saturation temperature of steam at 10 bar                  Specific volume...
The steady flow rate of steam through an adiabatic turbine is 2.5 kg/s . The steam...
The steady flow rate of steam through an adiabatic turbine is 2.5 kg/s . The steam at 600 oc and 10 bar enters the turbine through pipeline 10 cm in diameter. The steam exits the turbine through at pipeline 25 cm in diameter at a temperature 400 oc and pressure of 1 bar. State the steady flow energy equation At the inlet conditions of the turbine, obtain from steam tables                 The saturation temperature of steam at 10 bar                  Specific volume...
Steam enters an adiabatic turbine steadily at 3 MPa and 400°C and leaves at 50 kPa....
Steam enters an adiabatic turbine steadily at 3 MPa and 400°C and leaves at 50 kPa. If the isentropic efficiency of the turbine is 66.7%, determine the actual temperature of steam at turbine exit. The mass flow rate of the steam flowing through the turbine is 218 kg/min, determine the power output from the turbine. Plot the T-s diagram.
An adiabatic steam turbine receives 50 kg/s of superheated steam at 5 MPa and 500oC. Steam...
An adiabatic steam turbine receives 50 kg/s of superheated steam at 5 MPa and 500oC. Steam exits the turbine with a pressure of 100 kPa. Determine the minimum exit quality and the maximum power output of the turbine in kW.
A heavily insulated steam turbine operates steadily and is supplied with 1 kg/s steam at 2MPa,...
A heavily insulated steam turbine operates steadily and is supplied with 1 kg/s steam at 2MPa, 400 deg C. If the outlet temperature is 100 deg C and the turbine has an output of 1000 kW determine the quality of the outlet steam, the rate of entropy generation and the isentropic efficiency of the turbine. (Changes in kinetic and potential energy are negligible).
A heavily insulated steam turbine operates steadily and is supplied with 1 kg/s steam at 2MPa,...
A heavily insulated steam turbine operates steadily and is supplied with 1 kg/s steam at 2MPa, 400 deg C. If the outlet temperature is 100 deg C and the turbine has an output of 1000 kW determine the quality of the outlet steam, the rate of entropy generation and the isentropic efficiency of the turbine. (Changes in kinetic and potential energy are negligible).
Steam enters a turbine at a rate of 550 kg/hr. The steam enters the turbine at...
Steam enters a turbine at a rate of 550 kg/hr. The steam enters the turbine at 28 atm and 350°C at a linear velocity of 55 m/s. The steam leaves the turbine at a point 3.5 m below the turbine inlet at atmospheric pressure and a velocity of 355 m/s. The turbine delivers shaft work at a rate of 50 kW, and the heat loss from the turbine is estimated to be 2250 kcal/hr. What is the temperature of the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT