Question

In: Physics

Two blocks, of weights 3.5 N and 5.8 N, are connected by a massless string and...

Two blocks, of weights 3.5 N and 5.8 N, are connected by a massless string and slide down a 39° inclined plane. The coefficient of kinetic friction between the lighter block and the plane is 0.064; that between the heavier block and the plane is 0.30. Assuming that the lighter block leads, find (a) the magnitude of the acceleration of the blocks and (b) the tension in the string.

Solutions

Expert Solution


Related Solutions

Two blocks (m1=3kg, m2=7.8kg ) are connected by a string that passes through a massless pulley...
Two blocks (m1=3kg, m2=7.8kg ) are connected by a string that passes through a massless pulley as shown in the Figure. The first block with mass m1  slides up the inclined plane when the system is released. The inclined plane makes an angle  θ = 220  with the horizontal and the kinetic friction coefficient between the inclined plane and   m1 is =0.49.   Take  g=10m/s2 Find the speed of the block with mass m2 after it travels h=5.8m.
In the figure below the two blocks are connected by a string of negligible mass passing...
In the figure below the two blocks are connected by a string of negligible mass passing over a frictionless pulley. m1 = 10.0 kg and m2 = 4.50 kg and the angle of the incline is θ = 44.0°. Assume that the incline is smooth. (Assume the +x direction is down the incline of the plane.) (a) With what acceleration does the mass m2 move on the incline surface? Indicate the direction with the sign of your answer. (b) What...
Two blocks connected by a string are pushed across a horizontalisurface by a force applied to...
Two blocks connected by a string are pushed across a horizontalisurface by a force applied to one of the blocks as, shown in the figure. The coefficient of kinetic friction between the blocks and the surface is 0.20. If, F 20 N and M1.5 kg, what is the tension in the connecting, string?
Two blocks are connected by a light string that passes over a frictionless pulley as in...
Two blocks are connected by a light string that passes over a frictionless pulley as in the figure below. The system is released from rest while m2 is on the floor and m1 is a distance h above the floor. (a) Assuming m1 > m2, find an expression for the speed of m1 just as it reaches the floor. (Use any variable or symbol stated above along with the following as necessary: g.) vf = Incorrect: Your answer is incorrect....
Two blocks are connected by a light string that passes over a frictionless pulley having a...
Two blocks are connected by a light string that passes over a frictionless pulley having a moment of inertia of 0.0040 kg*m2 and a radius of 5.0 cm. The coefficient of kinetic friction between the table top and the upper block is 0.300. The blocks are released from rest. Using energy methods, find the speed of the upper block just as it has moved 0.600 m.
Two blocks connected by a light string are being pulled across a frictionless horizontal tabletop by...
Two blocks connected by a light string are being pulled across a frictionless horizontal tabletop by a hanging 15.0-N weight (block C). Block A has a mass of 4.00 kg. The mass of block B is only 1.00 kg. The blocks gain speed as they move toward the right, and the strings remain taut at all times. ? 1) Assuming the pulley is massless and frictionless, what is the value of the tension T1? (Express your answer to three significant...
A 2.0 kg ball and a 3.5 kg ball are connected by a 3.0-mm-long rigid, massless...
A 2.0 kg ball and a 3.5 kg ball are connected by a 3.0-mm-long rigid, massless rod. The rod and balls are rotating clockwise about its center of gravity at 18 rpm. What magnitude torque will bring the balls to a halt in 6.0 s?
Two blocks are placed at the ends of a horizontal massless board, as in the drawing....
Two blocks are placed at the ends of a horizontal massless board, as in the drawing. The board is kept from rotating and rests on a support that serves as an axis of rotation. The block on the right has a mass of 4.0 kg. Determine the magnitude of the angular acceleration when the system is allowed to rotate.
Two blocks are arranged as shown. The pulley can be considered to be massless, and friction...
Two blocks are arranged as shown. The pulley can be considered to be massless, and friction is negligible. M1 is three times more massive than M2. a. How are the magnitudes of acceleration of blocks 1 and 2 relate? b. What is the magnitude of acceleration on block 1 after the system is released from rest? c. If the system is released from rest, how far will M1 travel in 0.306 s?
Two small spheres, each of mass m and of negligible radius, are connected by a massless...
Two small spheres, each of mass m and of negligible radius, are connected by a massless rigid rod of length d such that the there is length d between the centers of masses of the two spheres, and the centers of masses of the spheres and the center of mass of the rod are in the same plane.   1. The moment of inertia about an axis perpendicular to the connecting rod and through its center is: a. 0 b. 0.25md2...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT