Question

In: Physics

Two blocks are connected by a light string that passes over a frictionless pulley as in...

Two blocks are connected by a light string that passes over a frictionless pulley as in the figure below. The system is released from rest while m2 is on the floor and m1 is a distance h above the floor.

(a) Assuming m1 > m2, find an expression for the speed of m1 just as it reaches the floor. (Use any variable or symbol stated above along with the following as necessary: g.) vf = Incorrect: Your answer is incorrect. (b) Taking m1 = 6.6 kg, m2 = 3.7 kg, and h = 3.9 m, evaluate your answer to part (a). Correct: Your answer is correct. m/s (c) Find the speed of each block when m1 has fallen a distance of 2.0 m. 4.93 Incorrect: Your answer is incorrect.

Solutions

Expert Solution

First define your initial and final position. To make it easier, the initial position when the system is at rest. We will define y=0 at the position of the masses at rest. When the system is released, m1 drops by a distance d, m2 rises by the same distance d, and the spring is stretched by the same distance d as well, since they are all connected. Initially the system has no kinetic energy or potential energy. After the system is displaced a distance, d, after release the system has gained potential energy - both gravitational potential energy, PEg and Spring Potential energy, PEs. Thus,
E(initial) = E (final)
0 = PEg (for m1) + PEg (for m2) + PEs
0 = m1g(-d) + m2gd + 0.5kd^2 (FY1: d is negative for m1 because m1 being drops down)
Now, divide both sides by d
0 = -m1g + m2g + 0.5kd
Isolate for d
2g (m1 - m2) / k = d

When typing this in webassign, be mindful of the notation (i.e. the 1 in m1 and the 2 in m2 should be typed as subscripts).

Hope this helps! :)


Related Solutions

Two blocks are connected by a light string that passes over a frictionless pulley having a...
Two blocks are connected by a light string that passes over a frictionless pulley having a moment of inertia of 0.0040 kg*m2 and a radius of 5.0 cm. The coefficient of kinetic friction between the table top and the upper block is 0.300. The blocks are released from rest. Using energy methods, find the speed of the upper block just as it has moved 0.600 m.
Two masses are connected by a light string, which passes over a frictionless pulley as shown...
Two masses are connected by a light string, which passes over a frictionless pulley as shown in fig .3 on a the chalkboard. The inclined plane is rough. When m1=10kg , m2 = 3.0 kg and theta = 60degrees, the 10 kg mass moves down the inclined plane and accelerates down the nclined pane at a rate of 2.0m/s^2. Find a) the tension in the string. b)the coefficient of kinetic friction between the 10 kg mass and the inclined plane.
Two blocks (m1=3kg, m2=7.8kg ) are connected by a string that passes through a massless pulley...
Two blocks (m1=3kg, m2=7.8kg ) are connected by a string that passes through a massless pulley as shown in the Figure. The first block with mass m1  slides up the inclined plane when the system is released. The inclined plane makes an angle  θ = 220  with the horizontal and the kinetic friction coefficient between the inclined plane and   m1 is =0.49.   Take  g=10m/s2 Find the speed of the block with mass m2 after it travels h=5.8m.
Two blocks connected by a light string are being pulled across a frictionless horizontal tabletop by...
Two blocks connected by a light string are being pulled across a frictionless horizontal tabletop by a hanging 15.0-N weight (block C). Block A has a mass of 4.00 kg. The mass of block B is only 1.00 kg. The blocks gain speed as they move toward the right, and the strings remain taut at all times. ? 1) Assuming the pulley is massless and frictionless, what is the value of the tension T1? (Express your answer to three significant...
wo blocks are connected by an ideal cord that passes over a frictionless pulley. If m1 = 3.6 kg and m2 = 9.2 kg, and block 2 is initially at r
Two blocks are connected by an ideal cord that passes over a frictionless pulley. If m1 = 3.6 kg and m2 = 9.2 kg, and block 2 is initially at rest 140 cm above the floor, how long does it take block 2 to reach the floor?  
A system composed of blocks, a light frictionless pulley, and connecting ropes is shown in the figure.
A system composed of blocks, a light frictionless pulley, and connecting ropes is shown in the figure. The coefficient of friction between the both blocks and the incline is 0.12. The 9.0-kg block accelerates downward when the system is released from rest. What is the acceleration of the system and the tension in the rope connecting the 6.0-kg block and the 4.0-kg block?
Block A is connected to block B by a string that goes over an ideal pulley...
Block A is connected to block B by a string that goes over an ideal pulley as shown in the figure. Block A has a mass of 5.00 kg and can slide over a rough plane inclined 30.0° to the horizontal. The coefficient of kinetic friction between block A and the plane is 0.400. Block B has a mass of 3.77 kg. (a) Draw the free body diagram (b) What is the reaction of the surface on block A? (c)...
A lightweight rope is wrapped around a 100-lb drum, passes over a frictionless pulley, and is...
A lightweight rope is wrapped around a 100-lb drum, passes over a frictionless pulley, and is attached to a weight W (see figure). The coefficient of friction between the drum and the surfaces is 0.50. Determine the maximum amount of weight that can be supported by this arrangement.
In the figure below the two blocks are connected by a string of negligible mass passing...
In the figure below the two blocks are connected by a string of negligible mass passing over a frictionless pulley. m1 = 10.0 kg and m2 = 4.50 kg and the angle of the incline is θ = 44.0°. Assume that the incline is smooth. (Assume the +x direction is down the incline of the plane.) (a) With what acceleration does the mass m2 move on the incline surface? Indicate the direction with the sign of your answer. (b) What...
Two blocks connected by a string are pushed across a horizontalisurface by a force applied to...
Two blocks connected by a string are pushed across a horizontalisurface by a force applied to one of the blocks as, shown in the figure. The coefficient of kinetic friction between the blocks and the surface is 0.20. If, F 20 N and M1.5 kg, what is the tension in the connecting, string?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT