In: Biology
Explain the meaning of the following statement: “Individuals within a population will not evolve, the population evolves.”
Populations evolve, not individuals. In order to understand evolution, it is necessary to view populations as a collection of individuals, each harboring a different set of traits. A single organism is never typical of an entire population unless there is no variation within that population. Individual organisms do not evolve, they retain the same genes throughout their life. When a population is evolving, the ratio of different genetic types is changing -- each individual organism within a population does not change. For example
The English moth, Biston betularia, is a frequently cited example of observed evolution. In this moth there are two color morphs, light and dark (typica and carbonaria). H. Kettlewell found that dark moths constituted less than 2% of the population prior to 1848. Then, the frequency of the dark morph began to increase. By 1898, the 95% of the moths in Manchester and other highly industrialized areas were of the dark type, their frequency was less in rural areas. The moth population changed from mostly light colored moths to mostly dark colored moths. The moths' color was primarily determined by a single gene. So, the change in frequency of dark colored moths represented a change in the gene pool. This change was, by definition, evolution.
The increase in relative abundance of the dark type was due to natural selection. The late eighteen hundreds was the time of England's industrial revolution. Soot from factories darkened the birch trees the moths landed on. Against a sooty background, birds could see the lighter colored moths better and ate more of them. As a result, more dark moths survived until reproductive age and left offspring. The greater number of offspring left by dark moths is what caused their increase in frequency. This is an example of natural selection.