In: Statistics and Probability
Below are four bivariate data sets and the scatter plot for each. (Note that each scatter plot is displayed on the same scale.) Each data set is made up of sample values drawn from a population.
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
Answer the following questions. The same response may be the correct answer for more than one question.
|

This is a strong negative correlation, which means If X variable increases then Y variable decreases


This is a moderate negative correlation. there is a tendency for U variable increasing with V variable decreasing

3)For w and t
| X | Y | X^2 | Y^2 | XY | |||
| 1 | 2.5 | 1 | 6.25 | 2.5 | |||
| 2 | 4.3 | 4 | 18.49 | 8.6 | |||
| 3 | 3.6 | 9 | 12.96 | 10.8 | |||
| 4 | 5.3 | 16 | 28.09 | 21.2 | |||
| 5 | 4.5 | 25 | 20.25 | 22.5 | |||
| 6 | 7.1 | 36 | 50.41 | 42.6 | |||
| 7 | 5.9 | 49 | 34.81 | 41.3 | |||
| 8 | 7.6 | 64 | 57.76 | 60.8 | |||
| 9 | 6.9 | 81 | 47.61 | 62.1 | |||
| 10 | 8.1 | 100 | 65.61 | 81 | |||
| SUM | 55 | 55.8 | 385 | 342.24 | 353.4 | ||
| n | 10 | ||||||
| Mean | 5.5 | 5.58 | |||||
| SSxx | 82.5 | Sum(x^2) - ((Sum(x))^2 /n) | SSR | 26.20909 | slope * Ssxy | MSR | 26.20909 |
| Ssyy | 30.876 | Sum(y^2) - ((Sum(y))^2 /n) | SSE | 4.666909 | SST-SSR | MSE | 0.583364 |
| Ssxy | 46.5 | Sum(xy) - (Sum(x)*Sum(y)/n) | SST | 30.876 | Ssyy | ||
| slope | 0.563636 | Ssxy/SSxx | |||||
| intercept | 2.48 | Mean Y - Mean X * Slope | |||||
| Se | 0.763782 | SQRT(SSE/(n-2)) | |||||
| Sb1 | 0.08409 | Se/SQRT(SSxx) | |||||
| r | 0.921331 | Ssxy/SQRT(SSxx*Ssyy) | |||||
| r^2 | 0.84885 |
This is a strong positive correlation, If w variable increases then t variable increases

4)
| X | Y | X^2 | Y^2 | XY | |||
| 1 | 3.8 | 1 | 14.44 | 3.8 | |||
| 2 | 6.7 | 4 | 44.89 | 13.4 | |||
| 3 | 8 | 9 | 64 | 24 | |||
| 4 | 8.8 | 16 | 77.44 | 35.2 | |||
| 5 | 9.6 | 25 | 92.16 | 48 | |||
| 6 | 9.8 | 36 | 96.04 | 58.8 | |||
| 7 | 9 | 49 | 81 | 63 | |||
| 8 | 8 | 64 | 64 | 64 | |||
| 9 | 6.7 | 81 | 44.89 | 60.3 | |||
| 10 | 4 | 100 | 16 | 40 | |||
| SUM | 55 | 74.4 | 385 | 594.86 | 410.5 | ||
| n | 10 | ||||||
| Mean | 5.5 | 7.44 | |||||
| SSxx | 82.5 | Sum(x^2) - ((Sum(x))^2 /n) | SSR | 0.020485 | slope * Ssxy | MSR | 0.020485 |
| Ssyy | 41.324 | Sum(y^2) - ((Sum(y))^2 /n) | SSE | 41.30352 | SST-SSR | MSE | 5.162939 |
| Ssxy | 1.3 | Sum(xy) - (Sum(x)*Sum(y)/n) | SST | 41.324 | Ssyy | ||
| slope | 0.015758 | Ssxy/SSxx | |||||
| intercept | 7.353333 | Mean Y - Mean X * Slope | |||||
| Se | 2.27221 | SQRT(SSE/(n-2)) | |||||
| Sb1 | 0.250162 | Se/SQRT(SSxx) | |||||
| r | 0.022265 | Ssxy/SQRT(SSxx*Ssyy) | |||||
| r^2 | 0.000496 |
technically a positive correlation, the relationship between m and n variables is weak
