Question

In: Statistics and Probability

1)A company has a policy of retiring company cars; this policy looks at number of miles...

1)A company has a policy of retiring company cars; this policy looks at number of miles driven, purpose of trips, style of car and other features. The distribution of the number of months in service for the fleet of cars is bell-shaped and has a mean of 38 months and a standard deviation of 10 months. Using the 68-95-99.7 rule, what is the approximate percentage of cars that remain in service between 48 and 68 months?

Do not enter the percent symbol.
ans = %

2)A company has a policy of retiring company cars; this policy looks at number of miles driven, purpose of trips, style of car and other features. The distribution of the number of months in service for the fleet of cars is bell-shaped and has a mean of 54 months and a standard deviation of 9 months. Using the empirical rule (as presented in the book), what is the approximate percentage of cars that remain in service between 63 and 81 months?

Do not enter the percent symbol.
ans = %

Solutions

Expert Solution

1) The distribution of the number of months in service for the fleet of cars is bell-shaped and has a mean of 38 months and a standard deviation of 10 months.

What is the approximate percentage of cars that remain in service between 48 and 68 months?

Here we want to use the 68-95-99.7 rule

Empirical Rule:

1) Approximate 68% of data falls within the 1 standard deviation from the mean.

2) Approximate 95% of data falls within the 2 standard deviation from the mean.

1) Approximate 99.7% of data falls within the 3 standard deviation from the mean.

Let's find the value of k

for x = 48

For x = 68

So that P(48 < X < 68) = P(1 < Z < 3)  


Related Solutions

A company has a policy of retiring company cars; this policy looks at number of miles...
A company has a policy of retiring company cars; this policy looks at number of miles driven, purpose of trips, style of car and other features. The distribution of the number of months in service for the fleet of cars is bell-shaped and has a mean of 55 months and a standard deviation of 8 months. Using the empirical rule (as presented in the book), what is the approximate percentage of cars that remain in service between 39 and 47...
A company has a policy of retiring company cars; this policy looks at number of miles...
A company has a policy of retiring company cars; this policy looks at number of miles driven, purpose of trips, style of car and other features. The distribution of the number of months in service for the fleet of cars is bell-shaped and has a mean of 47 months and a standard deviation of 5 months. Using the 68-95-99.7 rule, what is the approximate percentage of cars that remain in service between 57 and 62 months?
A company has a policy of retiring company cars; this policy looks at number of miles...
A company has a policy of retiring company cars; this policy looks at number of miles driven, purpose of trips, style of car and other features. The distribution of the number of months in service for the fleet of cars is bell-shaped and has a mean of 45 months and a standard deviation of 10 months. Using the 68-95-99.7 rule, what is the approximate percentage of cars that remain in service between 55 and 75 months?
A company has a policy of retiring company cars; this policy looks at number of miles...
A company has a policy of retiring company cars; this policy looks at number of miles driven, purpose of trips, style of car and other features. The distribution of the number of months in service for the fleet of cars is bell-shaped and has a mean of 42 months and a standard deviation of 6 months. Using the 68-95-99.7 rule, what is the approximate percentage of cars that remain in service between 54 and 60 months?
A company has a policy of retiring company cars; this policy looks at number of miles...
A company has a policy of retiring company cars; this policy looks at number of miles driven, purpose of trips, style of car and other features. The distribution of the number of months in service for the fleet of cars is bell-shaped and has a mean of 57 months and a standard deviation of 11 months. Using the empirical (68-95-99.7) rule, what is the approximate percentage of cars that remain in service between 24 and 46 months? Ans = %...
A company has a policy of retiring company cars; this policy looks at number of miles...
A company has a policy of retiring company cars; this policy looks at number of miles driven, purpose of trips, style of car and other features. The distribution of the number of months in service for the fleet of cars is bell-shaped and has a mean of 55 months and a standard deviation of 8 months. Using the 68-95-99.7 rule, what is the approximate percentage of cars that remain in service between 31 and 47 months?
A company has a policy of retiring company cars; this policy looks at number of miles...
A company has a policy of retiring company cars; this policy looks at number of miles driven, purpose of trips, style of car and other features. The distribution of the number of months in service for the fleet of cars is bell-shaped and has a mean of 64 months and a standard deviation of 9 months. Using the empirical rule (as presented in the book), what is the approximate percentage of cars that remain in service between 82 and 91...
A company has a policy of retiring company cars; this policy looks at number of miles...
A company has a policy of retiring company cars; this policy looks at number of miles driven, purpose of trips, style of car and other features. The distribution of the number of months in service for the fleet of cars is bell-shaped and has a mean of 37 months and a standard deviation of 4 months. Using the 68-95-99.7 rule, what is the approximate percentage of cars that remain in service between 25 and 29 months? Do not enter the...
NORMAL DISTRIBUTION 1A. A company has a policy of retiring company cars; this policy looks at...
NORMAL DISTRIBUTION 1A. A company has a policy of retiring company cars; this policy looks at number of miles driven, purpose of trips, style of car and other features. The distribution of the number of months in service for the fleet of cars is bell-shaped and has a mean of 58 months and a standard deviation of 4 months. Using the 68-95-99.7 rule, what is the approximate percentage of cars that remain in service between 66 and 70 months? Do...
1. (No computer output is accepted) The mpg (miles per gallon) for all cars has a...
1. (No computer output is accepted) The mpg (miles per gallon) for all cars has a normal distribution with mean 100 km/L and standard deviation of 15 km/L. a) Calculate the probability that any randomly selected car has an amount of mpg greater than 120 km/L. b) Calculate the probability that any randomly selected car has an amount of mpg less than 95 km/L. c) Calculate the probability that any randomly selected car has an amount of mpg between 93...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT