Question

In: Statistics and Probability

1. (No computer output is accepted) The mpg (miles per gallon) for all cars has a...

1. (No computer output is accepted) The mpg (miles per gallon) for all cars has a normal distribution with mean 100 km/L and standard deviation of 15 km/L.

a) Calculate the probability that any randomly selected car has an amount of mpg greater than 120 km/L.

b) Calculate the probability that any randomly selected car has an amount of mpg less than 95 km/L.

c) Calculate the probability that any randomly selected car has an amount of mpg between 93 km/L and 110 km/L.

d) A car is identified as a “best quality” if it is included in the top 2% of all mpgs. Find the minimum mpg needed to be qualified as “best quality”.

(Use 4 significant digits in your results. For example, if your answer is 20/7, write 2.8571. Moreover, do not leave the solution as 20/7. and , show your solutions in detail.)

Solutions

Expert Solution

Let X be a random variable representing the amount of mpg of a car. Then X has normal distribution with mean and standard deviation

a.  the probability that any randomly selected car has an amount of mpg greater than 120 km/L

=

b. the probability that any randomly selected car has an amount of mpg less than 95 km/L

=

c.  the probability that any randomly selected car has an amount of mpg between 93 km/L and 110 km/L

=

d. Let x= the minimum mpg needed to be qualified as “best quality”

So minimum mpg required 130.81 Km/L.

Here for all the questions   is a standard normal random variable with


Related Solutions

The mpg (miles per gallon) for all cars has a normal distribution with mean 100 km/L...
The mpg (miles per gallon) for all cars has a normal distribution with mean 100 km/L and standard deviation of 15 km/L a) Calculate the probability that any randomly selected car has an amount of mpg greater than 120 km/L. b) Calculate the probability that any randomly selected car has an amount of mpg less than 95 km/L. c) Calculate the probability that any randomly selected car has an amount of mpg between 93 km/L and 110 km/L. d) A...
A car manufacturer claims that the miles per gallon (mpg) of all its midsize cars can...
A car manufacturer claims that the miles per gallon (mpg) of all its midsize cars can be modeled with a normal model with N(33, 1.70). What proportion of cars have miles per gallon less than 31.2 [P(x ≤31.2 mpg)]? What proportion of cars will have miles per gallon greater than 36 [P(x ≥36 mpg)]? What proportion of cars will have miles per gallon less than 30[P(x ≤30 mpg)]? What proportion of cars will have miles per gallon between 32 and...
Suppose that the miles-per-gallon (mpg) rating of passenger cars is normally distributed with a mean and...
Suppose that the miles-per-gallon (mpg) rating of passenger cars is normally distributed with a mean and a standard deviation of 32.6 and 4.9 mpg, respectively. [You may find it useful to reference the z table.] a. What is the probability that a randomly selected passenger car gets more than 36 mpg? (Round “z” value to 2 decimal places, and final answer to 4 decimal places.) b. What is the probability that the average mpg of two randomly selected passenger cars...
Suppose that the miles-per-gallon (mpg) rating of passenger cars is normally distributed with a mean and...
Suppose that the miles-per-gallon (mpg) rating of passenger cars is normally distributed with a mean and a standard deviation of 31.6 and 4.9 mpg, respectively. a. What is the probability that a randomly selected passenger car gets more than 35 mpg? (Round “z” value to 2 decimal places, and final answer to 4 decimal places.) b. What is the probability that the average mpg of two randomly selected passenger cars is more than 35 mpg? (Round “z” value to 2...
Suppose that the miles-per-gallon (mpg) rating of passenger cars is normally distributed with a mean and...
Suppose that the miles-per-gallon (mpg) rating of passenger cars is normally distributed with a mean and a standard deviation of 35.9 and 2.5 mpg, respectively. [You may find it useful to reference the z table.] a. What is the probability that a randomly selected passenger car gets more than 37 mpg? b. What is the probability that the average mpg of three randomly selected passenger cars is more than 37 mpg? (Round “z” value to 2 decimal places, and final...
Suppose that the miles-per-gallon (mpg) rating of passenger cars is normally distributed with a mean and...
Suppose that the miles-per-gallon (mpg) rating of passenger cars is normally distributed with a mean and a standard deviation of 30.9 and 2.7 mpg, respectively. [You may find it useful to reference the z table.] a. What is the probability that a randomly selected passenger car gets more than 32 mpg? (Round “z” value to 2 decimal places, and final answer to 4 decimal places.) b. What is the probability that the average mpg of four randomly selected passenger cars...
The fuel consumption, in miles per gallon, of all cars of a particular model has a...
The fuel consumption, in miles per gallon, of all cars of a particular model has a mean of 25 and a standard deviation of 2. The population distribution can be assumed as normal. A random sample of these cars is taken. a. Find the probability that the sample mean fuel consumption will be fewer than 24 miles per gallon if (i) a sample of 1 observation is taken, (ii) a sample of 4 observations if taken and (iii) a sample...
Suppose that the miles-per-gallon (mpg) rating of passenger cars is a normally distributed random variable with...
Suppose that the miles-per-gallon (mpg) rating of passenger cars is a normally distributed random variable with a mean and standard deviation of 33.8 and 3.5 mpg, respectively. a. What is the probability that a randomly selected passenger car gets more than 35mpg? b. a random sample of twenty-five passenger cars is selected. Denote Xbar as the sample average mpg of this twenty-five. What is the mean and standard deviation of Xbar? c. What is the probability that the average mpg...
It is necessary for an automobile producer to estimate the number of miles per gallon (mpg)...
It is necessary for an automobile producer to estimate the number of miles per gallon (mpg) achieved by its cars. Suppose that the sample mean for a random sample of 5050 cars is 30.630.6 mpg and assume the standard deviation is 3.63.6 mpg. Now suppose the car producer wants to test the hypothesis that μμ, the mean number of miles per gallon, is 31.631.6 against the alternative hypothesis that it is not 31.631.6. Conduct a test using a significance level...
It is necessary for an automobile producer to estimate the number of miles per gallon (mpg)...
It is necessary for an automobile producer to estimate the number of miles per gallon (mpg) achieved by its cars. Suppose that the sample mean for a random sample of 5050 cars is 30.630.6 mpg and assume the standard deviation is 3.63.6 mpg. Now suppose the car producer wants to test the hypothesis that μμ, the mean number of miles per gallon, is 31.631.6 against the alternative hypothesis that it is not 31.631.6. Conduct a test using a significance level...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT