Question

In: Chemistry

A 25 g piece of hot iron is dropped into a glass of ice water containing...

A 25 g piece of hot iron is dropped into a glass of ice water containing 15.0 g of ice and 50.0 g of water. If the iron loses 8.00 kJ of energy to the ice water in achieving equilibrium, what is the equilibrium temperature? ∆Hfus = 6.01 kJ/mol

Solutions

Expert Solution

The amount of heat required to melt ice , q = m∆Hfus

Where

m = mass of ice = 15.0 g

∆Hfus = 6.01 kJ/mol

          = 6.01 kJ/mol x (mol / 18.0 g)

          = 0.334 kJ/g

So q = 15.0g x 0.334 kJ

        = 5.01 kJ

So among 8.00 kJ of heat lost by iron , 5.01 kJ of heat is utilized to melt ice to water.

The remaining 8.00-5.01 = 2.99 kJ = 2.99x1000 J = 2990 J of heat is utilized to convert water( of mass 15.0g) & water ( of mass 50.0g) to a common temperature t .

So Q = 2990J = mcdt + m'cdt

                       = (m+m')cdt

Where

m = mass of ice = 15.0 g

m' = mass of water = 50.0 g

c = specific heat capacity of water = 4.186 J/g degree C

dt = change in temperature = final - initial

    = t - 0

    = t oC

Plug the values we get

2990 = ( 15.0+50.0) x 4.186xt

t = 10.99 oC

Therefore the equilibrium temperature is 10.99 oC


Related Solutions

A 25 g piece of metal is dropped into 100.0 g sample of water. The water...
A 25 g piece of metal is dropped into 100.0 g sample of water. The water temperature drops by 5.0 C. The piece of metal's temperature increases by 85 C. What is the specific heat of this piece of metal? (The specific heat of water is 4.18 J/gC)
A glass of ice water containing nine ice cubes will be colder than a similar-size glass of ice water containing only three ice cubes.
  A glass of ice water containing nine ice cubes will be colder than a similar-size glass of ice water containing only three ice cubes. True False Heat is released when a liquid freezes into a solid. True False All intermolecular forces are broken when a liquid vaporizes into a gas. True False Dispersion forces result from the temporary distortion of the electron cloud in an atom or molecule which increases in magnitude with increasing size. True False Dipole-dipole forces...
(a) Two 29 g ice cubes are dropped into 170 g of water in a thermally...
(a) Two 29 g ice cubes are dropped into 170 g of water in a thermally insulated container. If the water is initially at 26°C, and the ice comes directly from a freezer at -16°C, what is the final temperature at thermal equilibrium? (b) What is the final temperature if only one ice cube is used? The specific heat of water is 4186 J/kg·K. The specific heat of ice is 2220 J/kg·K. The latent heat of fusion is 333 kJ/kg.
28 g of ice at -100C is dropped in an insulated 75-g aluminum calorimeter cup containing...
28 g of ice at -100C is dropped in an insulated 75-g aluminum calorimeter cup containing 140 g of water at 300C. (a) Calculate the equilibrium temperature of the container. Specific heats of liquid water, ice and aluminum are 4186 J/(kg 0C), 2090 J/(kg 0C) and 910 J/(kg 0C)respectively. Latent heat of fusion for ice is 3.33 x 105 J/kg. (b) What if, find the final temperature if 68 g of ice had been dropped.
A 50-g cube of ice, initially at 0.0°C, is dropped into 200 g of water in...
A 50-g cube of ice, initially at 0.0°C, is dropped into 200 g of water in an 80-g aluminum container, both initially at 30°C. What is the final equilibrium temperature? (Specific heat for aluminum is 900 J/kg×°C, the specific heat of water is 4 186 J/kg×°C, and Lf = 3.33 ´ 105 J/kg.)
28 g of ice at -10⁰C is dropped in an insulated 75-g aluminum calorimeter cup containing...
28 g of ice at -10⁰C is dropped in an insulated 75-g aluminum calorimeter cup containing 140 g of water at 30⁰C. (a) Calculate the equilibrium temperature of the container. Specific heats of liquid water, ice and aluminum are 4186 J/(kg ⁰C), 2090 J/(kg ⁰C) and 910 J/(kg ⁰C)respectively. Latent heat of fusion for ice is 3.33 x 105 J/kg. (b) What if, find the final temperature if 68 g of ice had been dropped.
1. The hot metal piece weighing 2.500g at 100.0°C is dropped into 40.0 mL water at...
1. The hot metal piece weighing 2.500g at 100.0°C is dropped into 40.0 mL water at 20.0 °C. The final temperature of the system is 24.0°C. If the metal is treated as the system, the surrounding is: a) water b) styrofoam c) air d) metal 2. Is q(system) positive or negative ? 3. Calculate the specific heat of a solid metal (s(metal)), enter numerical value only. 4. According to the definition of q1, q2 and q3, calculate each of these...
A 190 g piece of ice at 0°C is placed in 400 g of water at...
A 190 g piece of ice at 0°C is placed in 400 g of water at 24°C. The system is in a container of negligible heat capacity and is insulated from its surroundings. (a) What is the final equilibrium temperature of the system? °C (b) How much of the ice melts? g
A 116-g cube of ice at 0 ∘∘C is dropped into 1.26 kg of water that...
A 116-g cube of ice at 0 ∘∘C is dropped into 1.26 kg of water that was originally 84.1∘C. What is the final temperature of the water after the ice melts and the water comes to thermal equilibrium? This problem requires a lot of algebra. You will make fewer errors if you solve for the answer using symbols and then plug in the numbers. The specific heat of water and the latent heat of fusion for water are given in...
Consider a glass of 274 mL of water at 25°C. Calculate the mass of ice at...
Consider a glass of 274 mL of water at 25°C. Calculate the mass of ice at -15°C that must be added to cool the water to 10°C after thermal equilibrium is achieved. To find the mass of water use the density of water = 1.0 g/mL.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT