In: Finance
Compute the payback period, Internal Rate of Return and Net. Present Value. Assume a Discount Rate of 4%, Ivt. in Project is $1,500,000 Year Return ($) 1 300k 2 500k 3 400k 4 300k 5 200k 6 100k
| Computation of NPV | ||||||
| Detail | Amount (1) (in $000) | PVF @4% (2) | Time | PV (1*2) (in $ 000) | ||
| Cash Inflow | 300 | 0.94 | 1 | 283.02 | ||
| 500 | 0.89 | 2 | 445.00 | |||
| 400 | 0.84 | 3 | 335.85 | |||
| 300 | 0.79 | 4 | 237.63 | |||
| 200 | 0.75 | 5 | 149.45 | |||
| 100 | 0.70 | 6 | 70.50 | |||
| Present Value of Cahs inflow (A) | 1800 | 1521.4406 | ||||
| Present value of Cash outflow (B) | 1500 | 1500 | ||||
| NPV (A-B) | 21.440589 | |||||
| Computation of Payback period | ||||||
| Detail | Year | Amount (1) (in $000) | Cummulative amount ( in $000) | |||
| Inflow | 1 | 300 | 300 | |||
| 2 | 500 | 800 | ||||
| 3 | 400 | 1200 | ||||
| 4 | 300 | 1500 | ||||
| 5 | 200 | 1700 | ||||
| 6 | 100 | 1800 | ||||
| Net Investment | 1500 | |||||
| Payback period will be 4 year | ||||||
| Computation of NPV | ||||||
| Detail | Amount (1) (in $000) | Time | PVF @4% (2) | PV (1*2) (in $ 000) | PVF @7% (3) | PV (1*3) (in $000) |
| Cash Inflow | 300 | 1 | 0.96 | 288.46 | 0.93 | 280.37 |
| 500 | 2 | 0.92 | 462.28 | 0.87 | 436.72 | |
| 400 | 3 | 0.89 | 355.60 | 0.82 | 326.52 | |
| 300 | 4 | 0.85 | 256.44 | 0.76 | 228.87 | |
| 200 | 5 | 0.82 | 164.39 | 0.71 | 142.60 | |
| 100 | 6 | 0.79 | 79.03 | 0.67 | 66.63 | |
| Present Value of Cahs inflow (A) | 1800 | 1606.1963 | 1,481.71 | |||
| Present value of Cash outflow (B) | 1500 | 1500 | 1500 | |||
| NPV (A-B) | 106.19632 | (18.29) | ||||
| IRR= Lower dicount rate + | NPV at Lower rate | X | (Higher rate-Lower rate) | |||
| NPV at Lower rate- NPV at Higher rate | ||||||
| IRR= 4% + | 106.2 | |||||
| (106.20-(-18.29) | ||||||
| 4%+ | 106.2 | X | 3% | |||
| 124.49 | ||||||
| IRR= | 6.55% | |||||