In: Finance
Compute the payback period, Internal Rate of Return and Net. Present Value. Assume a Discount Rate of 4%, Ivt. in Project is $1,500,000 Year Return ($) 1 300k 2 500k 3 400k 4 300k 5 200k 6 100k
Computation of NPV | ||||||
Detail | Amount (1) (in $000) | PVF @4% (2) | Time | PV (1*2) (in $ 000) | ||
Cash Inflow | 300 | 0.94 | 1 | 283.02 | ||
500 | 0.89 | 2 | 445.00 | |||
400 | 0.84 | 3 | 335.85 | |||
300 | 0.79 | 4 | 237.63 | |||
200 | 0.75 | 5 | 149.45 | |||
100 | 0.70 | 6 | 70.50 | |||
Present Value of Cahs inflow (A) | 1800 | 1521.4406 | ||||
Present value of Cash outflow (B) | 1500 | 1500 | ||||
NPV (A-B) | 21.440589 | |||||
Computation of Payback period | ||||||
Detail | Year | Amount (1) (in $000) | Cummulative amount ( in $000) | |||
Inflow | 1 | 300 | 300 | |||
2 | 500 | 800 | ||||
3 | 400 | 1200 | ||||
4 | 300 | 1500 | ||||
5 | 200 | 1700 | ||||
6 | 100 | 1800 | ||||
Net Investment | 1500 | |||||
Payback period will be 4 year | ||||||
Computation of NPV | ||||||
Detail | Amount (1) (in $000) | Time | PVF @4% (2) | PV (1*2) (in $ 000) | PVF @7% (3) | PV (1*3) (in $000) |
Cash Inflow | 300 | 1 | 0.96 | 288.46 | 0.93 | 280.37 |
500 | 2 | 0.92 | 462.28 | 0.87 | 436.72 | |
400 | 3 | 0.89 | 355.60 | 0.82 | 326.52 | |
300 | 4 | 0.85 | 256.44 | 0.76 | 228.87 | |
200 | 5 | 0.82 | 164.39 | 0.71 | 142.60 | |
100 | 6 | 0.79 | 79.03 | 0.67 | 66.63 | |
Present Value of Cahs inflow (A) | 1800 | 1606.1963 | 1,481.71 | |||
Present value of Cash outflow (B) | 1500 | 1500 | 1500 | |||
NPV (A-B) | 106.19632 | (18.29) | ||||
IRR= Lower dicount rate + | NPV at Lower rate | X | (Higher rate-Lower rate) | |||
NPV at Lower rate- NPV at Higher rate | ||||||
IRR= 4% + | 106.2 | |||||
(106.20-(-18.29) | ||||||
4%+ | 106.2 | X | 3% | |||
124.49 | ||||||
IRR= | 6.55% | |||||