In: Statistics and Probability
2. Given the following data determine
a. the correlation coefficient
b. The straight-line equation using the least square method
c. Find the standard error.
X= 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 Y=2.5, 4.8, 6.5, 7.9, 9.7, 11.1, 12.7, 14.7, 16, 17.4.
X | Y | X * Y | X2 | Ŷ | (Y - Ŷ)2 | |
1 | 2.5 | 2.5 | 1 | 2.9855 | 0.2357 | |
2 | 4.8 | 9.6 | 4 | 4.6176 | 0.0333 | |
3 | 6.5 | 19.5 | 9 | 6.2497 | 0.0627 | |
4 | 7.9 | 31.6 | 16 | 7.8818 | 0.0003 | |
5 | 9.7 | 48.5 | 25 | 9.5139 | 0.0346 | |
6 | 11.1 | 66.6 | 36 | 11.1461 | 0.0021 | |
7 | 12.7 | 88.9 | 49 | 12.7782 | 0.0061 | |
8 | 14.7 | 117.6 | 64 | 14.4103 | 0.0839 | |
9 | 16 | 144 | 81 | 16.0424 | 0.0018 | |
10 | 17.4 | 174 | 100 | 17.6745 | 0.0754 | |
Total | 55 | 103.3 | 702.8 | 385 | 187332.0118 | 0.5359 |
Part a)
r = 0.999
Part b)
Equation of regression line is Ŷ = a + bX
b = 1.632
a =( Σ Y - ( b * Σ X) ) / n
a =( 103.3 - ( 1.6321 * 55 ) ) / 10
a = 1.353
Equation of regression line becomes Ŷ = 1.3533 + 1.6321
X
Part c)
Standard Error of Estimate S = √ ( Σ (Y - Ŷ )2 / n -
2) = √(0.5359 / 8) = 0.2588