In: Economics
An Individual who makes $32,000 per year anticipate retiring in 30 years. If his salary is increased by $600 each year and he deposits 10% of his yearly salary into a fund that earns 7% interest, what is the future worth at retirement? Please don't copy from Chegg. Show work!
The cash flow for year 1 is 10% of salary =0.1*32000=$3200
Each every salary increase by $600, so savings increase by= 0.1*600=$60
We use the concept of Future Worth=Future Worth Factor*Cash Flows
Future Worth Factor= (1+i)30-n where n= no. of years and i=7%
Year(n) | Salary | Cash Flows(Savings) | Future Worth Factor= (1+i)^(30-n) | Future Worth= Future Worth Factor*Cash Flows |
1 | 32000 | 3200 | 7.114257049 | 22765.62256 |
2 | 32600 | 3260 | 6.648838364 | 21675.21307 |
3 | 33200 | 3320 | 6.21386763 | 20630.04053 |
4 | 33800 | 3380 | 5.807352925 | 19628.85289 |
5 | 34400 | 3440 | 5.42743264 | 18670.36828 |
6 | 35000 | 3500 | 5.072366953 | 17753.28434 |
7 | 35600 | 3560 | 4.740529863 | 16876.28631 |
8 | 36200 | 3620 | 4.430401741 | 16038.0543 |
9 | 36800 | 3680 | 4.140562375 | 15237.26954 |
10 | 37400 | 3740 | 3.869684462 | 14472.61989 |
11 | 38000 | 3800 | 3.616527535 | 13742.80463 |
12 | 38600 | 3860 | 3.379932276 | 13046.53858 |
13 | 39200 | 3920 | 3.158815211 | 12382.55563 |
14 | 39800 | 3980 | 2.952163749 | 11749.61172 |
15 | 40400 | 4040 | 2.759031541 | 11146.48742 |
16 | 41000 | 4100 | 2.57853415 | 10571.99002 |
17 | 41600 | 4160 | 2.409845 | 10024.9552 |
18 | 42200 | 4220 | 2.252191589 | 9504.248505 |
19 | 42800 | 4280 | 2.104851952 | 9008.766356 |
20 | 43400 | 4340 | 1.967151357 | 8537.436891 |
21 | 44000 | 4400 | 1.838459212 | 8089.220535 |
22 | 44600 | 4460 | 1.71818618 | 7663.110362 |
23 | 45200 | 4520 | 1.605781476 | 7258.132274 |
24 | 45800 | 4580 | 1.500730352 | 6873.345011 |
25 | 46400 | 4640 | 1.402551731 | 6507.84003 |
26 | 47000 | 4700 | 1.31079601 | 6160.741247 |
27 | 47600 | 4760 | 1.225043 | 5831.20468 |
28 | 48200 | 4820 | 1.1449 | 5518.418 |
29 | 48800 | 4880 | 1.07 | 5221.6 |
30 | 49400 | 4940 | 1 | 4940 |
Net Future Value | $357526.6188 |