Question

In: Finance

E(Rp) = 12%, Rf = 2%, Бp = 4, βp = 1.5 Find the Sharpe and...

E(Rp) = 12%, Rf = 2%, Бp = 4, βp = 1.5 Find the Sharpe and Treynor index.

Solutions

Expert Solution

Sharpe Ratio = (Rp - Rf)Standard Deviation

Sharpe Ratio = (0.12 - 0.02)/0.04

Sharpe Ratio = 2.50

Treynor Ratio = (0.12 - 0.02)/1.50

Treynor Ratio = 0.07


Related Solutions

The following six (4) questions are based on the following data: Year Rp Rm Rf 2000...
The following six (4) questions are based on the following data: Year Rp Rm Rf 2000 18.1832 -24.9088 5.112 2001 -3.454 -15.1017 5.051 2002 47.5573 20.784 3.816 2003 28.7035 9.4163 4.2455 2004 29.8613 8.7169 4.2182 2005 11.2167 16.3272 4.3911 2006 32.2799 14.5445 4.7022 2007 -41.0392 -36.0483 4.0232 2008 17.6082 9.7932 2.2123 2009 14.1058 16.5089 3.8368 2010 16.1978 8.0818 3.2935 2011 11.558 15.1984 1.8762 2012 42.993 27.1685 1.7574 2013 18.8682 17.2589 3.0282 2014 -1.4678 5.1932 2.1712 2015 9.2757 4.4993 2.2694 2016...
What is the estimated discount rate of ABC (assume beta=1.5)? Assume the market risk premium (E[rm]-rf)...
What is the estimated discount rate of ABC (assume beta=1.5)? Assume the market risk premium (E[rm]-rf) is 5% and assume the risk-free rate is 1%. A. 9% B. 4.5% C. 6% D. 8.5%
Consider two well-diversified portfolios, A and C, rf = 4%, E(rA) = 10%, E(rC) = 6%,...
Consider two well-diversified portfolios, A and C, rf = 4%, E(rA) = 10%, E(rC) = 6%, bA = 1, bC = ½ If the maximum amount you can borrow is $1,000,000, what is your arbitrage strategy and profit?     A.   Long 1 A , short 0.5 C , short 0.5 rf, profit=$5,000     B.   Long 1C , short 0.5 A, short 0.5 rf, profit=$5,000     C.   Long 0.5 C, Long 0.5 rf, short 1 A, profit=$10,000     D.   Long 0.5...
The capital asset pricing model (CAPM) can be written as E(Ri) = Rf+ βi[E(Rm) − Rf]...
The capital asset pricing model (CAPM) can be written as E(Ri) = Rf+ βi[E(Rm) − Rf] using the standard notation. The first step in using the CAPM is to estimate the stock’s beta using the market model. The market model can be written as Rit= αi+ βiRmt+ uit where Rit is the excess return for security i at time t, Rmtis the excess return on a proxy for the market portfolio at time t, and utis an iid random disturbance...
Show that E(RX) = 10.5%, σX = 3.12%; E(RZ) = 9.4%, σZ = 0.49%; & E(Rp)...
Show that E(RX) = 10.5%, σX = 3.12%; E(RZ) = 9.4%, σZ = 0.49%; & E(Rp) = 10.06%, σp = 1.92%, for assets X & Z, predicted to return (15 & 10%) in booming, (10 & 9%) in normal & (5 & 10%) in busting economy, if chances of boom, normal & bust economy are 0.25, 0.6 & 0.15, & you invest $6,000 in asset X & $4,000 in asset Z. I get E(Rp)= 10.06%, but when I try to...
An element e of a ring is called an idempotent if e^2 = e. Find a...
An element e of a ring is called an idempotent if e^2 = e. Find a nontrivial idempotent e in the ring Z143.
Two assets P and Q, E(rp) = 10%, σp = 10%, E(rq) = 15%, σq =...
Two assets P and Q, E(rp) = 10%, σp = 10%, E(rq) = 15%, σq = 25%. The risk-free rate of interest (on bills) is 5%. Now, let’s allow borrowing on margin. Investors can buy P and Q on margin (but not both). The borrowing rate is the risk-free rate. State whether the following statements are true or false and give reasons: (a) “Investor who prefers P to Q must be risk-averse.” (b) “Investor who prefers Q to P cannot...
Year Rp Rm Rf 2000 18.1832 -24.9088 5.112 2001 -3.454 -15.1017 5.051 2002 47.5573 20.784 3.816...
Year Rp Rm Rf 2000 18.1832 -24.9088 5.112 2001 -3.454 -15.1017 5.051 2002 47.5573 20.784 3.816 2003 28.7035 9.4163 4.2455 2004 29.8613 8.7169 4.2182 2005 11.2167 16.3272 4.3911 2006 32.2799 14.5445 4.7022 2007 -41.0392 -36.0483 4.0232 2008 17.6082 9.7932 2.2123 2009 14.1058 16.5089 3.8368 2010 16.1978 8.0818 3.2935 2011 11.558 15.1984 1.8762 2012 42.993 27.1685 1.7574 2013 18.8682 17.2589 3.0282 2014 -1.4678 5.1932 2.1712 2015 9.2757 4.4993 2.2694 2016 8.5985 23.624 2.4443 When performing calculations in the following problems, use...
Year Rp Rm Rf 2000 18.1832 -24.9088 5.112 2001 -3.454 -15.1017 5.051 2002 47.5573 20.784 3.816...
Year Rp Rm Rf 2000 18.1832 -24.9088 5.112 2001 -3.454 -15.1017 5.051 2002 47.5573 20.784 3.816 2003 28.7035 9.4163 4.2455 2004 29.8613 8.7169 4.2182 2005 11.2167 16.3272 4.3911 2006 32.2799 14.5445 4.7022 2007 -41.0392 -36.0483 4.0232 2008 17.6082 9.7932 2.2123 2009 14.1058 16.5089 3.8368 2010 16.1978 8.0818 3.2935 2011 11.558 15.1984 1.8762 2012 42.993 27.1685 1.7574 2013 18.8682 17.2589 3.0282 2014 -1.4678 5.1932 2.1712 2015 9.2757 4.4993 2.2694 2016 8.5985 23.624 2.4443 When performing calculations in the following problems, use...
Year Rp Rm Rf 2000 18.1832 -24.9088 5.112 2001 -3.454 -15.1017 5.051 2002 47.5573 20.784 3.816...
Year Rp Rm Rf 2000 18.1832 -24.9088 5.112 2001 -3.454 -15.1017 5.051 2002 47.5573 20.784 3.816 2003 28.7035 9.4163 4.2455 2004 29.8613 8.7169 4.2182 2005 11.2167 16.3272 4.3911 2006 32.2799 14.5445 4.7022 2007 -41.0392 -36.0483 4.0232 2008 17.6082 9.7932 2.2123 2009 14.1058 16.5089 3.8368 2010 16.1978 8.0818 3.2935 2011 11.558 15.1984 1.8762 2012 42.993 27.1685 1.7574 2013 18.8682 17.2589 3.0282 2014 -1.4678 5.1932 2.1712 2015 9.2757 4.4993 2.2694 2016 8.5985 23.624 2.4443 When performing calculations in the following problems, use...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT