Question

In: Chemistry

Use standard free energies of formation to calculate ΔG∘ at 25∘C for each of the following...

Use standard free energies of formation to calculate ΔG∘ at 25∘C for each of the following reactions.

1. CoO(s)+H2(g)→Co(s)+H2O(g)

2. NH4I(s)→HI(g)+NH3(g)

3.H2(g)+FeO(s)→Fe(s)+H2O(g)

4.SiH4(g)→Si(s)+2H2(g)

Solutions

Expert Solution

ΔG0 = ∑ΔG0f (Products) - ∑ΔG0f (reactants)

Using this formula,

1) CoO(s) + H2(g) ---------> Co(s) + H2O(g)

ΔG0 = [ΔG0f Co (s) + ΔG0f (H2O)] – [ΔG0f CoO (s) + ΔG0f H2 (g)]

ΔG0 = [(0) + (-228.61)] – [(-214.2) + (0)]

ΔG0 = -14.41 kJ

==========================================================

2) NH4I(s)→HI(g)+NH3(g)

ΔG0 = [ΔG0f HI (g) + ΔG0f (NH3 (g))] – [ΔG0f NH4I (g)]

ΔG0 = [(+1.3) + (-13.4)] – [-112 ]

ΔG0 = + 99.9 kJ [or + 100 KJ ]

========================================================

3) H2(g)+FeO(s)→Fe(s)+H2O(g)

ΔG0 = [ΔG0f Fe (s) + ΔG0f (H2O)] – [ΔG0f FeO (s) + ΔG0f H2 (g)]

ΔG0 = [(0) + (-228.61)] – [(−251.4) + (0)]

ΔG0 = + 22.79 kJ [or + 22.8 KJ]

============================================================

4) SiH4(g)→Si(s)+2H2(g)

ΔG0 = [ΔG0f Si(s) + 2 ΔG0f H2(g) ] – [ΔG0f SiH4(g)]

ΔG0 = [ 0 + 2 x (0 )] – [+ 56.9]

ΔG0 = - 56.9 kJ [or + 57 KJ]

==============================XXXXXXXXXXXXXXXXXXXXXXX======================


Related Solutions

a) Calculate ΔG for the process below, the combustion of methane. Standard free energies of formation,...
a) Calculate ΔG for the process below, the combustion of methane. Standard free energies of formation, △G°, in kJ/mol, are given below each reactant and product in the process shown below. CH4(g) + O2(g) → CO2(g) + H2O(g) (not balanced!) – 50.8 – 394.4 – 228.6 b) Coal gasification can be represented by the balanced equation: 2 C(s) + 2 H2O(g) → CH4(g) + CO2(g) Using the free energies from part a), calculate ΔG for this reaction. c) Write the...
Use tabulated half-cell potentials to calculate ΔG∘rxn for each of the following reactions at 25 ∘C....
Use tabulated half-cell potentials to calculate ΔG∘rxn for each of the following reactions at 25 ∘C. Part A 2Fe3+(aq)+3Sn(s)→2Fe(s)+3Sn2+(aq) Express the energy change in kilojoules to two significant figures. Part B O2(g)+2H2O(l)+2Cu(s)→4OH−(aq)+2Cu2+(aq) Express the energy change in kilojoules to one significant figure. Part C Br2(l)+2I−(aq)→2Br−(aq)+I2(s) Express the energy change in kilojoules to two significant figures.
Based on the standard free energies of formation, which of the following reactions represent a feasible...
Based on the standard free energies of formation, which of the following reactions represent a feasible way to synthesize the product? A. 2C(s)+H2(g)→C2H2(g);    ΔG∘f=209.2 kJ/mol B. C(s)+O2(g)→CO2(g);    ΔG∘f=−394.4 kJ/mol C. 2C(s)+2H2(g)→C2H4(g);    ΔG∘f=68.20 kJ/mol D. 2CO(g)+O2(g)→2CO2(g);    ΔG∘f=−788.0 kJ/mol
Given that ΔG∘ = −13.6 kJ/mol, calculate ΔG at 25∘C for the following sets of conditions....
Given that ΔG∘ = −13.6 kJ/mol, calculate ΔG at 25∘C for the following sets of conditions. 1) 30 atm NH3, 30 atm CO2, 4.0 M NH2CONH2 Express the free energy in kilojoules per mole to two significant figures. 2) 8.0×10−2 atm NH3, 8.0×10−2 atm CO2, 1.0 M NH2CONH2 Express the free energy in kilojoules per mole to two significant figures. Is the reaction spontaneous for the conditions in Part A and/or Part B? A) Is the reaction spontaneous for the...
For each of the following reactions, calculate ΔH∘rxnΔHrxn∘, ΔS∘rxnΔSrxn∘, and ΔG∘rxnΔGrxn∘ at 25 ∘C∘C. State whether...
For each of the following reactions, calculate ΔH∘rxnΔHrxn∘, ΔS∘rxnΔSrxn∘, and ΔG∘rxnΔGrxn∘ at 25 ∘C∘C. State whether or not the reaction is spontaneous. If the reaction is not spontaneous, would a change in temperature make it spontaneous? If so, should the temperature be raised or lowered from 25 ∘C∘C? Part A 2CH4(g)→C2H6(g)+H2(g)2CH4(g)→C2H6(g)+H2(g) Express your answer to one decimal place. Part B Calculate ΔS∘rxnΔSrxn∘ at 25 ∘C∘C. Express your answer to one decimal place. Part D 2NH3(g)→N2H4(g)+H2(g)2NH3(g)→N2H4(g)+H2(g) Express your answer to one...
For each of the following reactions, calculate ΔH∘rxn, ΔS∘rxn, and ΔG∘rxn at 25 ∘C. State whether...
For each of the following reactions, calculate ΔH∘rxn, ΔS∘rxn, and ΔG∘rxn at 25 ∘C. State whether or not the reaction is spontaneous. If the reaction is not spontaneous, would a change in temperature make it spontaneous? If so, should the temperature be raised or lowered from 25 ∘C?2CH4(g)→C2H6(g)+H2(g), Calculate ΔS∘rxn at 25 ∘C. 2NH3(g)→N2H4(g)+H2(g) Calculate ΔS∘rxn at 25 ∘C. N2(g)+O2(g)→2NO(g) Calculate ΔS∘rxn at 25 ∘C. 2KClO3(s)→2KCl(s)+3O2(g) Calculate ΔS∘rxn at 25 ∘C.
For each of the following reactions, calculate ΔH∘rxn, ΔS∘rxn, ΔG∘rxn at 25 ∘C. State whether or...
For each of the following reactions, calculate ΔH∘rxn, ΔS∘rxn, ΔG∘rxn at 25 ∘C. State whether or not the reaction is spontaneous. If the reaction is not spontaneous, would a change in temperature make it spontaneous? If so, should the temperature be raised or lowered from 25 ∘C? a) 2CH4(g)→C2H6(g)+H2(g) b) 2NH3(g)→N2H4(g)+H2(g) c) N2(g)+O2(g)→2NO(g) d) 2KClO3(s)→2KCl(s)+3O2(g) Can you please show equations. I am having so much trouble with these.
Calculate the equilibrium constant for each of the reactions at 25∘C. Standard Electrode Potentials at 25...
Calculate the equilibrium constant for each of the reactions at 25∘C. Standard Electrode Potentials at 25 ∘C Reduction Half-Reaction E∘(V) Fe3+(aq)+3e− →Fe(s) -0.036 Sn2+(aq)+2e− →Sn(s) -0.14 Ni2+(aq)+2e− →Ni(s) -0.23 O2(g)+2H2O(l)+4e− →4OH−(aq) 0.40 Br2(l)+2e− →2Br− 1.09 I2(s)+2e− →2I− 0.54 Part A 2Fe3+(aq)+3Sn(s)→2Fe(s)+3Sn2+(aq) Express your answer using two significant figures. Part B O2(g)+2H2O(l)+2Ni(s)→4OH−(aq)+2Ni2+(aq) Express your answer using two significant figures. Part C Br2(l)+2I−(aq)→2Br−(aq)+I2(s) Express your answer using two significant figures.
Write a chemical equation for the formation reaction and then calculate the standard free energy of...
Write a chemical equation for the formation reaction and then calculate the standard free energy of formation of each of the following compounds from the enthalpies of formation and the standard molar entropies, using ∆G◦ r = ∆H◦ r - T∆S◦ r: (a) NH3(g) (b) H2O(g) (c) CO(g) (d) NO2(g)
(a) Calculate the standard free-energy change (ΔG°) for the following oxidation-reduction reaction. Cu(s) + Br2(aq) →...
(a) Calculate the standard free-energy change (ΔG°) for the following oxidation-reduction reaction. Cu(s) + Br2(aq) → Cu2+(aq) + 2 Br−(aq) (b) Calculate the equilibrium constant for this reaction at 298 K.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT