In: Math
Compute the probability distribution, expectation, and variance of the following random variable:
- Multipliying the result of rolling two dice.
below is the probability distribution of rolling two dice:
| x | P(x) | 
| 1 | 1/36 | 
| 2 | 1/18 | 
| 3 | 1/18 | 
| 4 | 1/12 | 
| 5 | 1/18 | 
| 6 | 1/9 | 
| 8 | 1/18 | 
| 9 | 1/36 | 
| 10 | 1/18 | 
| 12 | 1/9 | 
| 15 | 1/18 | 
| 16 | 1/36 | 
| 18 | 1/18 | 
| 20 | 1/18 | 
| 24 | 1/18 | 
| 25 | 1/36 | 
| 30 | 1/18 | 
| 36 | 1/36 | 
| x | f(x) | xP(x) | x2P(x) | 
| 1 | 1/36 | 0.028 | 0.028 | 
| 2 | 1/18 | 0.111 | 0.222 | 
| 3 | 1/18 | 0.167 | 0.500 | 
| 4 | 1/12 | 0.333 | 1.333 | 
| 5 | 1/18 | 0.278 | 1.389 | 
| 6 | 1/9 | 0.667 | 4.000 | 
| 8 | 1/18 | 0.444 | 3.556 | 
| 9 | 1/36 | 0.250 | 2.250 | 
| 10 | 1/18 | 0.556 | 5.556 | 
| 12 | 1/9 | 1.333 | 16.000 | 
| 15 | 1/18 | 0.833 | 12.500 | 
| 16 | 1/36 | 0.444 | 7.111 | 
| 18 | 1/18 | 1.000 | 18.000 | 
| 20 | 1/18 | 1.111 | 22.222 | 
| 24 | 1/18 | 1.333 | 32.000 | 
| 25 | 1/36 | 0.694 | 17.361 | 
| 30 | 1/18 | 1.667 | 50.000 | 
| 36 | 1/36 | 1.000 | 36.000 | 
| total | 12.250 | 230.028 | |
| E(x) =μ= | ΣxP(x) = | 12.2500 | |
| E(x2) = | Σx2P(x) = | 230.0278 | |
| Var(x)=σ2 = | E(x2)-(E(x))2= | 79.9653 | 
from abvoe expectation =12.25
Variance =79.9653