In: Statistics and Probability
Given Information:
n=500
independent variable = drug dosage -> 400mg avg w/ stdv 75mg
dependent variable = days to recovery -> 10 days avg w/ stdv 3 days
* correlation coefficient is .65
stdv = sqrt of sample variance
Can you calculate the following:
x bar, y bar, Sxx, Syy, rxy, Sxy, β0, β1, SSR, SSE, s2
ANOVA Table
here, x̅ = Σx / n= 400.000 ,
ȳ = Σy/n = 10.000
SSxx = s²*(n-1) = 75^2*499 = 2806875.00
SSyy = 3² * 499 = 4491.00
r = 0.65
SSxy = r*Sx*Sy*(n-1) = 0.65*75*3*499 = 72978.75
estimated slope , ß1 = SSxy/SSxx =
72978.8 / 2806875.000
= 0.0260
intercept, ß0 = y̅-ß1* x̄ =
-0.40000
SSR= S²xy/Sxx = 1897.4475
SSE= (SSxx * SSyy - SS²xy)/SSxx =
2593.55250000
estimate of variance, Se² = SSE/(n-2) =
5.208
Anova table | |||||
variation | SS | df | MS | F-stat | p-value |
regression | 1897.45 | 1 | 1897.4475 | 364.3377 | 0.0000 |
error, | 2593.55 | 498 | 5.2079 | ||
total | 4491.000 | 499 |
please revert for doubts and
please UPVOTE the solution