In: Statistics and Probability
Given Information:
n=500
independent variable = drug dosage -> 400mg avg w/ stdv 75mg
dependent variable = days to recovery -> 10 days avg w/ stdv 3 days
* correlation coefficient is .65
stdv = sqrt of sample variance
Can you calculate the following:
x bar, y bar, Sxx, Syy, rxy, Sxy, β0, β1, SSR, SSE, s2
ANOVA Table
here, x̅ = Σx / n= 400.000 ,
    ȳ = Σy/n =   10.000
SSxx = s²*(n-1) = 75^2*499 = 2806875.00
SSyy = 3² * 499 = 4491.00
r = 0.65
SSxy = r*Sx*Sy*(n-1) = 0.65*75*3*499 = 72978.75
estimated slope , ß1 = SSxy/SSxx =  
72978.8   /   2806875.000  
=   0.0260
          
       
intercept,   ß0 = y̅-ß1* x̄ =  
-0.40000      
   
SSR=   S²xy/Sxx =   1897.4475
SSE=   (SSxx * SSyy - SS²xy)/SSxx =   
2593.55250000
estimate of variance,   Se² = SSE/(n-2) =   
5.208
| Anova table | |||||
| variation | SS | df | MS | F-stat | p-value | 
| regression | 1897.45 | 1 | 1897.4475 | 364.3377 | 0.0000 | 
| error, | 2593.55 | 498 | 5.2079 | ||
| total | 4491.000 | 499 | 
please revert for doubts and
please UPVOTE the solution