Question

In: Physics

n a series LRC circuit with a resistor of (R= 179 ohms) and a capacitor of...

n a series LRC circuit with a resistor of (R= 179 ohms) and a capacitor of (C= 92 uF) and an Inductor of ( L= 7 mH) . If the circuit is driven by an AC voltage of 144 volts , at 96 Hz , what is the current in the circuit in Amps?

Solutions

Expert Solution


Related Solutions

2)If an LRC series circuit has a resistance of 20 ohms and an inductor of L...
2)If an LRC series circuit has a resistance of 20 ohms and an inductor of L = 1 H, find the capacitance C so that the circuit is critically damped. Solve this case with the external force is E(t)=32e^(-32t) volts, q(0)=0, q'(0)=5
An electric circuit with a 115V source consists of a 72 ohms fixed resistor that is connected in series to a variable resistor with X ohms.
An electric circuit with a 115V source consists of a 72 ohms fixed resistor that is connected in series to a variable resistor with X ohms. if the circuit delivers 90 watts of power, determine the resistance of the variable resistor
An LRC series circuit consists of a 3.15 H inductor, a 6.36 ohm resistor, and a...
An LRC series circuit consists of a 3.15 H inductor, a 6.36 ohm resistor, and a 5.48 microFarand capacitor. The combination is connected to an AC votage source that has a peak voltage of 147 V and an angular frequency of 441 rad/s. What is the peak voltage measured across the inductor?
Find the charge on the capacitor in an LRC-series circuit at t = 0.05 s when...
Find the charge on the capacitor in an LRC-series circuit at t = 0.05 s when L = 0.05 h, R = 3 Ω, C = 0.008 f, E(t) = 0 V, q(0) = 4 C, and i(0) = 0 A. (Round your answer to four decimal places.) C Determine the first time at which the charge on the capacitor is equal to zero. (Round your answer to four decimal places.) s
Find the charge on the capacitor in an LRC-series circuit at t = 0.04 s when...
Find the charge on the capacitor in an LRC-series circuit at t = 0.04 s when L = 0.05 h, R = 1 Ω, C = 0.04 f, E(t) = 0 V, q(0) = 5 C, and i(0) = 0 A. (Round your answer to four decimal places.) ___________C Determine the first time at which the charge on the capacitor is equal to zero. (Round your answer to four decimal places.) _____________s
An L-R-C series circuit consists of a 60.0 Ω resistor, a 10.0 μF capacitor, a 3.60...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 10.0 μF capacitor, a 3.60 mH inductor, and an ac voltage source of voltage amplitude 60.0 V operating at 1450 Hz . a.) Find the current amplitude across the inductor, the resistor, and the capacitor. b.) Find the voltage amplitudes across the inductor, the resistor, and the capacitor. c.) Why can the voltage amplitudes add up to more than 60.0 V ? d.) If the frequency is now doubled,...
This problem deals with the RC circuit shown to the right containing a resistor​ (R ohms),...
This problem deals with the RC circuit shown to the right containing a resistor​ (R ohms), a capacitor​ (C farads), a​ switch, a source of​ emf, but no inductor. The differential equation for this circuit is given below. R(dQ/dT)+1/c(Q)=E(t) this is an equation for the charge Q(t) on the capacitor at time t. Note that I(t)=Q'(t). Use the values R=100, C=5.0x10^-4, Q(0)=0, and E(t)=100cos120t to find (a) and (b) below: a: find Q(t) and I(t) b: What is the amplitude...
A circuit is consisted of an inductor L, a capacitor C, and a resistor R. It...
A circuit is consisted of an inductor L, a capacitor C, and a resistor R. It is driven by an AC voltage of the form ?0sin (??). At the steady state, find (a) the charge and current as a function of time (b) the maximum amplitude of the current and the corresponding resonance frequency (c) the average power at the current’s resonance frequency (c) the quality factor Q
a circuit that has a resistor, capacitor, and inductor in series with a 5V AC voltage...
a circuit that has a resistor, capacitor, and inductor in series with a 5V AC voltage source R = 5 Ω; L = 1 mH; C = 447 a) Find ω0 and f0 b) Complete the table f = f0 f = 0.5f0 f = 1.5f0 I VL Vc c) What is the phase between circuit current and applied voltage at f = f0 (in radians) d) Determine if the below statements are true or false Below resonance (f <...
A resistor of resistance R and a capacitor of capacitance C are connected in series to...
A resistor of resistance R and a capacitor of capacitance C are connected in series to an EMF of voltage E. A switch is set to the open position and the capacitor is initially uncharged. The switch is then closed. Show that when the capacitor charges that half of the energy drawn from the EMF is dissipated in the resistor and that half of the energy is stored in the capacitor.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT