In: Finance
An investor has two bonds in her portfolio, Bond C and Bond Z. Each bond matures in 4 years, has a face value of $1,000, and has a yield to maturity of 9.3%. Bond C pays a 12% annual coupon, while Bond Z is a zero coupon bond. Assuming that the yield to maturity of each bond remains at 9.3% over the next 4 years, calculate the price of the bonds at each of the following years to maturity. Round your answer to the nearest cent. Years to Maturity Price of Bond C Price of Bond Z
4 Price of bond c Price of bond z
3
2
1
0
Years to maturity | Price of Bond C | Price of bond Z | ||||||||
4 | $ 1,086.90 | $ 700.68 | ||||||||
3 | $ 1,067.98 | $ 765.84 | ||||||||
2 | $ 1,047.30 | $ 837.07 | ||||||||
1 | $ 1,024.70 | $ 914.91 | ||||||||
0 | $ 1,000.00 | $ 1,000.00 | ||||||||
Working: | ||||||||||
Bond C: | ||||||||||
a. | 4 years to Maturity | |||||||||
Par Value | $ 1,000 | |||||||||
Annual Coupon | $ 1,000 | x | 12% | = | $ 120 | |||||
Present Value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | |||||||
= | (1-(1+0.093)^-4)/0.093 | i | 9.3% | |||||||
= | 3.2185 | n | 4 | |||||||
Present Value of single 1 | = | (1+i)^-n | Where, | |||||||
= | (1+0.093)^-4 | i | 9.3% | |||||||
= | 0.7007 | n | 4 | |||||||
Present Value of coupon | $ 120 | x | 3.2185 | = | $ 386.22 | |||||
Present Value of Par value | $ 1,000 | x | 0.7007 | = | $ 700.68 | |||||
Current Price | $ 1,086.90 | |||||||||
b. | 3 years to maturity | |||||||||
Present Value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | |||||||
= | (1-(1+0.093)^-3)/0.093 | i | 9.3% | |||||||
= | 2.518 | n | 3 | |||||||
Present Value of single 1 | = | (1+i)^-n | Where, | |||||||
= | (1+0.093)^-3 | i | 9.3% | |||||||
= | 0.766 | n | 3 | |||||||
Present Value of coupon | $ 120 | x | 2.5178 | = | $ 302.14 | |||||
Present Value of Par value | $ 1,000 | x | 0.7658 | = | $ 765.84 | |||||
Current Price | $ 1,067.98 | |||||||||
c. | 2 years to maturity | |||||||||
Present Value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | |||||||
= | (1-(1+0.093)^-2)/0.093 | i | 9.3% | |||||||
= | 1.7520 | n | 2 | |||||||
Present Value of single 1 | = | (1+i)^-n | Where, | |||||||
= | (1+0.093)^-2 | i | 9.3% | |||||||
= | 0.8371 | n | 2 | |||||||
Present Value of coupon | $ 120 | x | 1.7520 | = | $ 210.24 | |||||
Present Value of Par value | $ 1,000 | x | 0.8371 | = | $ 837.07 | |||||
Current Price | $ 1,047.30 | |||||||||
d. | 1 year to maturity | |||||||||
Present Value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | |||||||
= | (1-(1+0.093)^-1)/0.093 | i | 9.3% | |||||||
= | 0.9149 | n | 1 | |||||||
Present Value of single 1 | = | (1+i)^-n | Where, | |||||||
= | (1+0.093)^-1 | i | 9.3% | |||||||
= | 0.9149 | n | 1 | |||||||
Present Value of coupon | $ 120 | x | 0.9149 | = | $ 109.79 | |||||
Present Value of Par value | $ 1,000 | x | 0.9149 | = | $ 914.91 | |||||
Current Price | $ 1,024.70 | |||||||||
e. | 0 year to maturity | |||||||||
Present Value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | |||||||
= | (1-(1+0.093)^-0)/0.093 | i | 9.3% | |||||||
= | 0 | n | 0 | |||||||
Present Value of single 1 | = | (1+i)^-n | Where, | |||||||
= | (1+0.093)^-0 | i | 9.3% | |||||||
= | 1 | n | 0 | |||||||
Present Value of coupon | $ 120 | x | 0 | = | 0 | |||||
Present Value of Par value | $ 1,000 | x | 1.0000 | = | $ 1,000.00 | |||||
Current Price | $ 1,000.00 | |||||||||
Bond Z | ||||||||||
a. | 4 Years to maturity | |||||||||
Price of Bond | 1000 | x (1.093^-4) | = | $ 700.68 | ||||||
b. | 3 Years to maturity | |||||||||
Price of Bond | 1000 | x (1.093^-3) | = | $ 765.84 | ||||||
c. | 2 Years to Maturity | |||||||||
Price of Bond | 1000 | x (1.093^-2) | = | $ 837.07 | ||||||
d. | 1 Year to maturty | |||||||||
Price of Bond | 1000 | x (1.093^-1) | = | $ 914.91 | ||||||
e. | 0 year to maturity | |||||||||
Price of Bond | 1000 | x (1.093^-0) | = | $ 1,000.00 | ||||||