In: Finance
Bond Value as Maturity Approaches
An investor has two bonds in his portfolio. Each bond matures in 4 years, has a face value of $1,000, and has a yield to maturity equal to 8.4%. One bond, Bond C, pays an annual coupon of 11%; the other bond, Bond Z, is a zero coupon bond. Assuming that the yield to maturity of each bond remains at 8.4% over the next 4 years, what will be the price of each of the bonds at the following time periods? Assume time 0 is today. Fill in the following table. Round your answers to the nearest cent.
t | Price of Bond C | Price of Bond Z |
0 | $ | $ |
1 | ||
2 | ||
3 | ||
4 |
Current Bond price |
C Bond |
K = N |
Bond Price =∑ [( Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
k=1 |
K =4 |
Bond Price =∑ [(11*1000/100)/(1 + 8.4/100)^k] + 1000/(1 + 8.4/100)^4 |
k=1 |
Bond Price = 1085.35 |
Z Bond |
K = N |
Bond Price =∑ [( Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
k=1 |
K =4 |
Bond Price =∑ [(0*1000/100)/(1 + 8.4/100)^k] + 1000/(1 + 8.4/100)^4 |
k=1 |
Bond Price = 724.24 |
Price in 1 year |
C Bond |
K = N |
Bond Price =∑ [( Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
k=1 |
K =3 |
Bond Price =∑ [(11*1000/100)/(1 + 8.4/100)^k] + 1000/(1 + 8.4/100)^3 |
k=1 |
Bond Price = 1066.52 |
Z Bond |
K = N |
Bond Price =∑ [( Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
k=1 |
K =3 |
Bond Price =∑ [(0*1000/100)/(1 + 8.4/100)^k] + 1000/(1 + 8.4/100)^3 |
k=1 |
Bond Price = 785.08 |
Price in 2 year |
C Bond |
K = N |
Bond Price =∑ [( Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
k=1 |
K =2 |
Bond Price =∑ [(11*1000/100)/(1 + 8.4/100)^k] + 1000/(1 + 8.4/100)^2 |
k=1 |
Bond Price = 1046.11 |
Z Bond |
K = N |
Bond Price =∑ [( Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
k=1 |
K =2 |
Bond Price =∑ [(0*1000/100)/(1 + 8.4/100)^k] + 1000/(1 + 8.4/100)^2 |
k=1 |
Bond Price = 851.02 |
Price in 3 year |
C Bond |
K = N |
Bond Price =∑ [( Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
k=1 |
K =1 |
Bond Price =∑ [(11*1000/100)/(1 + 8.4/100)^k] + 1000/(1 + 8.4/100)^1 |
k=1 |
Bond Price = 1023.99 |
Z Bond |
K = N |
Bond Price =∑ [( Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
k=1 |
K =1 |
Bond Price =∑ [(0*1000/100)/(1 + 8.4/100)^k] + 1000/(1 + 8.4/100)^1 |
k=1 |
Bond Price = 922.51 |
Price in 4 year |
C Bond |
K = N |
Bond Price =∑ [( Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
k=1 |
K =0 |
Bond Price =∑ [(11*1000/100)/(1 + 8.4/100)^k] + 1000/(1 + 8.4/100)^0 |
k=1 |
Bond Price = 1000 |
Z Bond |
K = N |
Bond Price =∑ [( Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
k=1 |
K =0 |
Bond Price =∑ [(0*1000/100)/(1 + 8.4/100)^k] + 1000/(1 + 8.4/100)^0 |
k=1 |
Bond Price = 1000 |