In: Finance
| 
 1.  | 
 Suppose there are two assets, Asset 1 and Asset 2. You are given the following information about the two assets.  | 
E(R1) = 0.12 E(s1) = 0.05
E(R2) = 0.20 E(s2) = 0.08
Show your calculations.
The Expected return of the portfolio of 2 ASSETS is calculated as
Exp return = w1*r1 +w2*r2
Expected return on the portfolio = w1*r1 +w2*r2
Where the weights are given
W1=0.7
So W2 = (1-w1)
W2= 0.3
Standard Deviation of a portfolio of 2 Assets
Std dev = ((w1^2)(sd1)^2) + (W2^2 sd2^2) + (2*w1*w2*sd1*sd2*correlation ) ) ^ 1/2
A Corell = 1.0
Expected return = ( 0.7*12) +(0.3 * 20) = 14.4%
Standard Deviation
= (( 0.7^2 * 0.05^2) +( 0.3^2 * 0.08^2)+ ( 2* 0.05*0.08*0.7*0.3*1)) ^ 1/2
= 0.059 or 5.9%
| 
 Return %  | 
 Std Dev  | 
 Weight  | 
 Correlation  | 
|
| 
 Asset 1  | 
 12  | 
 0.05  | 
 0.7  | 
 1  | 
| 
 Asset 2  | 
 20  | 
 0.08  | 
 0.3  | 
|
| 
 Expected Return  | 
 14.400  | 
|||
| 
 Variance  | 
 0.003481  | 
|||
| 
 Std Dev  | 
 0.059  | 
b Corell = 0.50
Expected return = ( 0.7*12) +(0.3 * 20) = 14.4%
Standard Deviation
= (( 0.7^2 * 0.05^2) +( 0.3^2 * 0.08^2)+ ( 2* 0.05*0.08*0.7*0.3*0.50)) ^ 1/2
= 0.051390661 or 5.13%
| 
 Return %  | 
 Std Dev  | 
 Weight  | 
 Correlation  | 
|
| 
 Asset 1  | 
 12  | 
 0.05  | 
 0.7  | 
 0.5  | 
| 
 Asset 2  | 
 20  | 
 0.08  | 
 0.3  | 
|
| 
 Expected Return  | 
 14.400  | 
|||
| 
 Variance  | 
 0.002641  | 
|||
| 
 Std Dev  | 
 0.051390661  | 
C Corell = 00
Expected return = ( 0.7*12) +(0.3 * 20) = 14.4%
Standard Deviation
= (( 0.7^2 * 0.05^2) +( 0.3^2 * 0.08^2)+ ( 2* 0.05*0.08*0.7*0.3*0)) ^ 1/2
= 0.04243819
| 
 Return %  | 
 Std Dev  | 
 Weight  | 
 Correlation  | 
|
| 
 Asset 1  | 
 12  | 
 0.05  | 
 0.7  | 
 0  | 
| 
 Asset 2  | 
 20  | 
 0.08  | 
 0.3  | 
|
| 
 Expected Return  | 
 14.400  | 
|||
| 
 Variance  | 
 0.001801  | 
|||
| 
 Std Dev  | 
 0.04243819  | 
D Corell = -0.5
Expected return = ( 0.7*12) +(0.3 * 20) = 14.4%
Standard Deviation
= (( 0.7^2 * 0.05^2) +( 0.3^2 * 0.08^2)+ ( 2* 0.05*0.08*0.7*0.3*0)) ^ 1/2
= 0.031
| 
 Return %  | 
 Std Dev  | 
 Weight  | 
 Correlation  | 
|
| 
 Asset 1  | 
 12  | 
 0.05  | 
 0.7  | 
 -0.5  | 
| 
 Asset 2  | 
 20  | 
 0.08  | 
 0.3  | 
|
| 
 Expected Return  | 
 14.400  | 
|||
| 
 Variance  | 
 0.000961  | 
|||
| 
 Std Dev  | 
 0.031  | 
E Corell = -1.00
Expected return = ( 0.7*12) +(0.3 * 20) = 14.4%
Standard Deviation
= (( 0.7^2 * 0.05^2) +( 0.3^2 * 0.08^2)+ ( 2* 0.05*0.08*0.7*0.3*0)) ^ 1/2
= 0.011
| 
 Return %  | 
 Std Dev  | 
 Weight  | 
 Correlation  | 
|
| 
 Asset 1  | 
 12  | 
 0.05  | 
 0.7  | 
 -1  | 
| 
 Asset 2  | 
 20  | 
 0.08  | 
 0.3  | 
|
| 
 Expected Return  | 
 14.400  | 
|||
| 
 Variance  | 
 0.000121  | 
|||
| 
 Std Dev  | 
 0.011  | 
Part II
The most riskiest or risky case is CASE 1 with Corell with Corell(1,2) = 1
This is because the portfolio having the highest standard deviation is the most risky portfolio
Thanks