In: Finance
1. |
Suppose there are two assets, Asset 1 and Asset 2. You are given the following information about the two assets. |
E(R1) = 0.12 E(s1) = 0.05
E(R2) = 0.20 E(s2) = 0.08
Show your calculations.
The Expected return of the portfolio of 2 ASSETS is calculated as
Exp return = w1*r1 +w2*r2
Expected return on the portfolio = w1*r1 +w2*r2
Where the weights are given
W1=0.7
So W2 = (1-w1)
W2= 0.3
Standard Deviation of a portfolio of 2 Assets
Std dev = ((w1^2)(sd1)^2) + (W2^2 sd2^2) + (2*w1*w2*sd1*sd2*correlation ) ) ^ 1/2
A Corell = 1.0
Expected return = ( 0.7*12) +(0.3 * 20) = 14.4%
Standard Deviation
= (( 0.7^2 * 0.05^2) +( 0.3^2 * 0.08^2)+ ( 2* 0.05*0.08*0.7*0.3*1)) ^ 1/2
= 0.059 or 5.9%
Return % |
Std Dev |
Weight |
Correlation |
|
Asset 1 |
12 |
0.05 |
0.7 |
1 |
Asset 2 |
20 |
0.08 |
0.3 |
|
Expected Return |
14.400 |
|||
Variance |
0.003481 |
|||
Std Dev |
0.059 |
b Corell = 0.50
Expected return = ( 0.7*12) +(0.3 * 20) = 14.4%
Standard Deviation
= (( 0.7^2 * 0.05^2) +( 0.3^2 * 0.08^2)+ ( 2* 0.05*0.08*0.7*0.3*0.50)) ^ 1/2
= 0.051390661 or 5.13%
Return % |
Std Dev |
Weight |
Correlation |
|
Asset 1 |
12 |
0.05 |
0.7 |
0.5 |
Asset 2 |
20 |
0.08 |
0.3 |
|
Expected Return |
14.400 |
|||
Variance |
0.002641 |
|||
Std Dev |
0.051390661 |
C Corell = 00
Expected return = ( 0.7*12) +(0.3 * 20) = 14.4%
Standard Deviation
= (( 0.7^2 * 0.05^2) +( 0.3^2 * 0.08^2)+ ( 2* 0.05*0.08*0.7*0.3*0)) ^ 1/2
= 0.04243819
Return % |
Std Dev |
Weight |
Correlation |
|
Asset 1 |
12 |
0.05 |
0.7 |
0 |
Asset 2 |
20 |
0.08 |
0.3 |
|
Expected Return |
14.400 |
|||
Variance |
0.001801 |
|||
Std Dev |
0.04243819 |
D Corell = -0.5
Expected return = ( 0.7*12) +(0.3 * 20) = 14.4%
Standard Deviation
= (( 0.7^2 * 0.05^2) +( 0.3^2 * 0.08^2)+ ( 2* 0.05*0.08*0.7*0.3*0)) ^ 1/2
= 0.031
Return % |
Std Dev |
Weight |
Correlation |
|
Asset 1 |
12 |
0.05 |
0.7 |
-0.5 |
Asset 2 |
20 |
0.08 |
0.3 |
|
Expected Return |
14.400 |
|||
Variance |
0.000961 |
|||
Std Dev |
0.031 |
E Corell = -1.00
Expected return = ( 0.7*12) +(0.3 * 20) = 14.4%
Standard Deviation
= (( 0.7^2 * 0.05^2) +( 0.3^2 * 0.08^2)+ ( 2* 0.05*0.08*0.7*0.3*0)) ^ 1/2
= 0.011
Return % |
Std Dev |
Weight |
Correlation |
|
Asset 1 |
12 |
0.05 |
0.7 |
-1 |
Asset 2 |
20 |
0.08 |
0.3 |
|
Expected Return |
14.400 |
|||
Variance |
0.000121 |
|||
Std Dev |
0.011 |
Part II
The most riskiest or risky case is CASE 1 with Corell with Corell(1,2) = 1
This is because the portfolio having the highest standard deviation is the most risky portfolio
Thanks