In: Finance
You are constructing a portfolio of two assets, Asset A and Asset B. The expected returns of the assets are 12 percent and 28 percent, respectively. The standard deviations of the assets are 12 percent and 33 percent, respectively. The correlation between the two assets is 0.06 and the risk-free rate is 5 percent. What is the optimal Sharpe ratio in a portfolio of the two assets? Can you show this in excel?
Formula sheet
A | B | C | D | E | F | G | H |
2 | |||||||
3 | Optimal sharpe ratio will be the maximum sharpe ratio that can be obtained using the given assets. | ||||||
4 | |||||||
5 | Risk free rate | 0.05 | |||||
6 | |||||||
7 | Fund | Return | Standard Deviation | ||||
8 | A | 0.12 | 0.12 | ||||
9 | B | 0.28 | 0.33 | ||||
10 | Correlation(A,B) | 0.06 | |||||
11 | Cov(A,B) | =D10*E8*E9 | =D10*E8*E9 | ||||
12 | |||||||
13 | Sharpe ratio divides the average portfolio's excess return by the standard deviation of return over the period. | ||||||
14 | Sharpe Ratio | =(rp-rf)/?p | |||||
15 | Where, rp is average portfolio return, rf is risk free rate and ?p is standard deviation of return. | ||||||
16 | |||||||
17 | Finding the portfolio with higher sharpe ratio: | ||||||
18 | |||||||
19 | A | B | |||||
20 | Expected Return | =D8 | =D9 | ||||
21 | St. Deviation | =E8 | =E9 | ||||
22 | Cov(A,B) | =D11 | |||||
23 | Risk Free Rate | =D5 | |||||
24 | Sharpe ratio table can be prepared as follow: | ||||||
25 | Weight of A | Weight of B | Expected Return | St. Deviation | Sharpe Ratio | ||
26 | 0 | =1-C26 | =SUMPRODUCT(C26:D26,$D$20:$E$20) | =SQRT((C26*$D$21)^2+(D26*$E$21)^2+2*C26*D26*$D$22) | =(E26-$D$23)/F26 | ||
27 | =C26+0.1 | =1-C27 | =SUMPRODUCT(C27:D27,$D$20:$E$20) | =SQRT((C27*$D$21)^2+(D27*$E$21)^2+2*C27*D27*$D$22) | =(E27-$D$23)/F27 | ||
28 | =C27+0.1 | =1-C28 | =SUMPRODUCT(C28:D28,$D$20:$E$20) | =SQRT((C28*$D$21)^2+(D28*$E$21)^2+2*C28*D28*$D$22) | =(E28-$D$23)/F28 | ||
29 | =C28+0.1 | =1-C29 | =SUMPRODUCT(C29:D29,$D$20:$E$20) | =SQRT((C29*$D$21)^2+(D29*$E$21)^2+2*C29*D29*$D$22) | =(E29-$D$23)/F29 | ||
30 | =C29+0.1 | =1-C30 | =SUMPRODUCT(C30:D30,$D$20:$E$20) | =SQRT((C30*$D$21)^2+(D30*$E$21)^2+2*C30*D30*$D$22) | =(E30-$D$23)/F30 | ||
31 | =C30+0.1 | =1-C31 | =SUMPRODUCT(C31:D31,$D$20:$E$20) | =SQRT((C31*$D$21)^2+(D31*$E$21)^2+2*C31*D31*$D$22) | =(E31-$D$23)/F31 | ||
32 | =C31+0.1 | =1-C32 | =SUMPRODUCT(C32:D32,$D$20:$E$20) | =SQRT((C32*$D$21)^2+(D32*$E$21)^2+2*C32*D32*$D$22) | =(E32-$D$23)/F32 | ||
33 | =C32+0.1 | =1-C33 | =SUMPRODUCT(C33:D33,$D$20:$E$20) | =SQRT((C33*$D$21)^2+(D33*$E$21)^2+2*C33*D33*$D$22) | =(E33-$D$23)/F33 | ||
34 | =C33+0.1 | =1-C34 | =SUMPRODUCT(C34:D34,$D$20:$E$20) | =SQRT((C34*$D$21)^2+(D34*$E$21)^2+2*C34*D34*$D$22) | =(E34-$D$23)/F34 | ||
35 | =C34+0.1 | =1-C35 | =SUMPRODUCT(C35:D35,$D$20:$E$20) | =SQRT((C35*$D$21)^2+(D35*$E$21)^2+2*C35*D35*$D$22) | =(E35-$D$23)/F35 | ||
36 | =C35+0.1 | =1-C36 | =SUMPRODUCT(C36:D36,$D$20:$E$20) | =SQRT((C36*$D$21)^2+(D36*$E$21)^2+2*C36*D36*$D$22) | =(E36-$D$23)/F36 | ||
37 | |||||||
38 | Hence optimal sharpe ratio is | =MAX(G26:G36) | |||||
39 | Thus the corresponding portfolio should be chosen i.e. | ||||||
40 | Weight of A in the portfolio | =C33 | |||||
41 | Weight of B in the portfolio | =D33 | |||||
42 |