In: Finance
A security that increases in price from TZS 5000 to
TZS 10000 during the year 1 and drops back to TZS 5000 during year
2. what would be the Annual holding period yields , find arithmetic
mean rate of return and geometric mean rate of return
Formula sheet
A | B | C | D | E | F | G | H |
2 | |||||||
3 | |||||||
4 | Holding period return on stocks can be calculated as follows: | ||||||
5 | |||||||
6 | Annual Holding period yield = [Final Price - Initial Price] / Initial Price | ||||||
7 | |||||||
8 | Year | Price | Change in Price | Annual Holding period yield | |||
9 | 0 | 5000 | |||||
10 | 1 | 10000 | =D10-D9 | =E10/D9 | |||
11 | 2 | 5000 | =D11-D10 | =E11/D10 | |||
12 | |||||||
13 | Arithmatic mean rate of return | =AVERAGE(F10:F11) | =AVERAGE(F10:F11) | ||||
14 | |||||||
15 | |||||||
16 | Geometric mean of returns can be calculated as follows: | ||||||
17 | Geometric return over n year | =[(1+R1)*(1+R2)*(1+R3)*…*(1+Rn)](1/n)-1 | |||||
18 | Where R1, R2 … Rn are return in year 1, 2 …n respectively. | ||||||
19 | |||||||
20 | Geometric average return over 2 years | =[(1+R1)*(1+R2)](1/2)-1 | |||||
21 | =(((1+F10)*(1+F11))^(1/2))-1 | =(((1+F10)*(1+F11))^(1/2))-1 | |||||
22 | |||||||
23 | Hence Geometric average return is | =D21 | |||||
24 |