Question

In: Physics

A flywheel with a radius of 0.390 m starts from rest and accelerates with a constant...

A flywheel with a radius of 0.390 m starts from rest and accelerates with a constant angular acceleration of 0.670 rad/s2. Compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim at the start. Compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim after it has turned through 60.0 ∘. Compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim after it has turned through 120 ∘.

Solutions

Expert Solution


Related Solutions

A flywheel with a radius of 0.400 m starts from rest and accelerates with a constant...
A flywheel with a radius of 0.400 m starts from rest and accelerates with a constant angular acceleration of 0.640 rad/s2. A. Compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim at the start. Express your answers in meters per second squared separated by commas. B. Compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim after it has...
A flywheel with a radius of 0.700m starts from rest and accelerates with a constant angular...
A flywheel with a radius of 0.700m starts from rest and accelerates with a constant angular acceleration of 0.200rad/s2 A. Compute the magnitude of the resultant acceleration of a point on its rim after it has turned through 60.0 ?. B. Compute the magnitude of the resultant acceleration of a point on its rim after it has turned through 120.0 ?.
a). A prototype car starts from rest and accelerates at a constant rate to 30 m/s...
a). A prototype car starts from rest and accelerates at a constant rate to 30 m/s in 5.6 seconds. How much distance did the car travel during the 5.6-second accelerated motion? b). A car was parked on the side of a hillside road at the top of a hill. Unbeknown to the owner, its parking brake failed and tremors from nearby construction set it in motion with negligible initial speed down the hill. Assume the acceleration was constant down the...
a). A prototype car starts from rest and accelerates at a constant rate to 60 m/s...
a). A prototype car starts from rest and accelerates at a constant rate to 60 m/s in 4.1 seconds. How much distance did the car travel during the 4.1-second accelerated motion? b). A single-engine air plain starts its engine at one end of the runway. It accelerates at a constant rate and takes off at 36 m/s after 29 seconds on the runway, just as it is running out of runway. How long is the runway? c). An object is...
An electric vehicle starts from rest and accelerates at a rate of 2.4 m/s2 in a...
An electric vehicle starts from rest and accelerates at a rate of 2.4 m/s2 in a straight line until it reaches a speed of 27 m/s. The vehicle then slows at a constant rate of 1.4 m/s2 until it stops. (a) How much time elapses from start to stop? (b) How far does the vehicle move from start to stop?
An electric vehicle starts from rest and accelerates at a rate of 2.1 m/s2 in a...
An electric vehicle starts from rest and accelerates at a rate of 2.1 m/s2 in a straight line until it reaches a speed of 17 m/s. The vehicle then slows at a constant rate of 1.1 m/s2 until it stops. (a) How much time elapses from start to stop? (b) How far does the vehicle move from start to stop? solve both a b show units
A car starts from rest at a stop sign. It accelerates at 5.56 m/s2 for 6.56...
A car starts from rest at a stop sign. It accelerates at 5.56 m/s2 for 6.56 seconds, coasts for 3.6 s, and then slows down at a rate of 3.93 m/s2 for the next stop sign. How far apart are the stop signs?
A train starts from rest and accelerates uniformly with a = 2 m/s2 until it has...
A train starts from rest and accelerates uniformly with a = 2 m/s2 until it has traveled 1 km. The train then moves at a constant velocity of 20 m/s for one hour. The train then slows down uniformly at 0.05 m/s2, until it stops. Calculate: The maximum speed of the train The total distance traveled by train.
A bicyclist starts from rest and accelerates to 5 m/s in 20 s. The wheels of...
A bicyclist starts from rest and accelerates to 5 m/s in 20 s. The wheels of the bicycle have a diameter of 80 cm. a) What is the angular velocity of the wheels at maximum speed? b) What is the angular acceleration of the bicycle wheels during this time? c) Find the number of revolutions the wheels make during this time. d) Find the average angular velocity of the wheels between the start and finish.
A 108 m long train starts from rest (at t = 0) and accelerates uniformly. At...
A 108 m long train starts from rest (at t = 0) and accelerates uniformly. At the same time (at t = 0), a car moving with constant speed in the same direction reaches the back end of the train. At t = 12 s the car reaches the front of the train. However, the train continues to speed up and pulls ahead of the car. At t = 32 s, the car is left behind the train. Determine, the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT