To find the value of x, we will assume:
3x+1=u
Now, substituting 3x+1=u into the given equation, we have:
u23−24=40
⇒u23=40+24
⇒u23=64
Squaring both sides, we have:
⇒(u23)2=(64)2
⇒u3=(64)2
⇒u=(64)32[∵an=b∴a=bn1]
⇒u=(43)32
⇒u=42
⇒u=16
Now, undo substitution u=16 into 3x+1=u , we have:
3x+1=16
⇒3x=16−1
⇒x=315
⇒x=5
Hence, the solution of the given equation is x=5