Question

In: Advanced Math

Complete the proof for the claim that any open ball B(x0,r) in Euclidean space Rn is...

Complete the proof for the claim that any open ball B(x0,r) in Euclidean space Rn is homeomorphic to Rn.

proof is given below the theorem. Show that suggested map g is in fact homeomorphism.

Theorem: Let X0, X1, and X2 be topological spaces and let f: X0 -> X1 and g : X1 -> X2 be continuous functions. Then g∘f : X0 -> X2 is continuous.

proof : Suppose that V is open in X2. Since g is continuous, g-1(V) is open in X1. Since f is continuous, f-1(g-1(V)) = (g∘f)-1(V) is open in X0. It follows that g∘f is continuous.

Solutions

Expert Solution

Solution:


Related Solutions

Is my proof that empty set is open and R is open correct?
Is that empty set is open and R is open correct? Give details Explaination.
we have defined open sets in R: for any a ∈ R, there is sigma >...
we have defined open sets in R: for any a ∈ R, there is sigma > 0 such that (a − sigma, a + sigma) ⊆ A. (i) Let A and B be two open sets in R. Show that A ∩ B is open. (ii) Let {Aα}α∈I be a family of open sets in R. Show that ∪(α∈I)Aα is open. Hint: Follow the definition of open sets. Please be specific and rigorous! Thanks!
Prove that the following statements are equivalent. A. The Euclidean parallel postulate holds. B. Given any...
Prove that the following statements are equivalent. A. The Euclidean parallel postulate holds. B. Given any triangle △ABC and given any segment DE, there exists a triangle △DEF having DE as one of its sides such that △ABC ∼ △DEF (Wallis’ postulate on the existance of similar triangles). (you cannot use measures)
Show that any open subset of R (w. standard topology) is a countable union of open...
Show that any open subset of R (w. standard topology) is a countable union of open intervals. Please explain how to do, I only understand why it is true. What is required to fully prove this. What definitions should I be using.
Prove or disprove: Between any n-dimensional vector space V and Rn there is exactly one isomorphism...
Prove or disprove: Between any n-dimensional vector space V and Rn there is exactly one isomorphism T : V → Rn .
1. a. Show that for any y ∈ Rn, show that yyT is positive semidefinite. b....
1. a. Show that for any y ∈ Rn, show that yyT is positive semidefinite. b. Let X be a random vector in Rn with covariance matrix Σ = E[(X − E[X])(X − E[X])T]. Show that Σ is positive semidefinite. 2. Let X and Y be real independent random variables with PDFs given by f and g, respectively. Let h be the PDF of the random variable Z = X + Y . a. Derive a general expression for h...
f : [a, b] → R is continuous and in the open interval (a,b) differentiable. f...
f : [a, b] → R is continuous and in the open interval (a,b) differentiable. f rises strictly monotonously ⇒ ∀x ∈ (a, b) : f ′(x) > 0. (TRUE or FALSE?) f rises strictly monotonously ⇐ ∀x ∈ (a, b) : f ′(x) > 0. (TRUE or FALSE?) f is constant ⇐⇒ ∀x∈(a,b): f′(x)=0 (TRUE or FALSE?) If f is reversable, f has no critical point. (TRUE or FALSE?) If a is a “minimizer” of f, then f ′(a)...
Show that any open subset of R (w std. topology) is a countable union of open intervals.
Show that any open subset of R (w std. topology) is a countable union of open intervals.What is the objective of this problem and enough to show ?
Which has the burden of proof concerning an insurance claim? a. insured b. insurer c. third...
Which has the burden of proof concerning an insurance claim? a. insured b. insurer c. third party d. court e. none of these
Recall that (a,b)⊆R means an open interval on the real number line: (a,b)={x∈R|a<x<b}. Let ≤ be...
Recall that (a,b)⊆R means an open interval on the real number line: (a,b)={x∈R|a<x<b}. Let ≤ be the usual “less than or equal to” total order on the set A=(−2,0)∪(0,2) Consider the subset B={−1/n | n∈N, n≥1}⊆A. Determine an upper bound for B in A. Then formally prove that B has no least upper bound in A by arguing that every element of A fails the criteria in the definition of least upper bound. Note: least upper bound is an upper...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT