Question

In: Physics

A particle of mass 2.00 kg moves with position r(t) = x(t) i + y(t) j...

A particle of mass 2.00 kg moves with position r(t) = x(t) i + y(t) j where x(t) = 10t2 and y(t) = -3t + 2, with x and y in meters and t in seconds.

(a) Find the momentum of the particle at time t = 1.00 s.
(b) Find the angular momentum about the origin at time t = 3.00 s.

Solutions

Expert Solution


Related Solutions

A particle of mass 2.00 kg moves with position r(t) = x(t) i + y(t) j...
A particle of mass 2.00 kg moves with position r(t) = x(t) i + y(t) j where x(t) = 10t2 and y(t) = -3t + 2, with x and y in meters and t in seconds. (a) Find the momentum of the particle at time t = 1.00 s. (b) Find the angular momentum about the origin at time t = 3.00 s.
A particle moves with position r(t) = x(t) i + y(t) j where x(t) = 10t2...
A particle moves with position r(t) = x(t) i + y(t) j where x(t) = 10t2 and y(t) = -3t + 2, with x and y in meters and t in seconds. (a) Find the average velocity for the time interval from 1.00 s to 3.00 s. (b) Find the instantaneous velocity at t = 1.00 s. (c) Find the average acceleration from 1.00 s to 3.00 s. (d) Find the instantaneous acceleration at t = 1.00 s.
A 0.150 kg particle moves along an x axis according to x(t) = −13.00 + 2.00t...
A 0.150 kg particle moves along an x axis according to x(t) = −13.00 + 2.00t + 3.50t2 − 2.50t3, with x in meters and t in seconds. In unit-vector notation, what is the net force acting on the particle at t = 3.55 s? F with arrow = ______ N
Find the distance traveled by a particle with position (x, y) as t varies in the...
Find the distance traveled by a particle with position (x, y) as t varies in the given time interval. x = 5 sin2 t,    y = 5 cos2 t,    0 ≤ t ≤ 5π What is the length of the curve?
A particle of mass 2.00 kg is attached to a spring with a force constant of...
A particle of mass 2.00 kg is attached to a spring with a force constant of 300 N/m. It is oscillating on a horizontal frictionless surface with an amplitude of 4.00 m. A 7.00 kg object is dropped vertically on top of the 2.00 kg object as it passes through its equilibrium point. The two objects stick together. (a) Does the amplitude of the vibrating system increase or decrease as a result of the collision? decreases increases no change (b)By...
The position of a particle is r={(3t3−2t)i−(4t1/2+t)j+(3t2−2)k}m, where t is in seconds. Part A Determine the...
The position of a particle is r={(3t3−2t)i−(4t1/2+t)j+(3t2−2)k}m, where t is in seconds. Part A Determine the magnitude of the particle's velocity when t = 0.5 s . Express your answer with the appropriate units. v=? Part B Determine the magnitude of the particle's acceleration when t = 0.5 s . Express your answer with the appropriate units. a=?
A particle with mass m moves on the surface of a cylinder with radius R. At...
A particle with mass m moves on the surface of a cylinder with radius R. At the same time, the force F = -kr on the particle affects it through the z axis. Using the z-and θ generalized coordinates, find the system's hamitonians. Solve the Hamilton equation after defining the conservative quantities.
A particle (mass = 6.7 x 10-27 kg, charge = 3.2 x 10-19 C) moves along...
A particle (mass = 6.7 x 10-27 kg, charge = 3.2 x 10-19 C) moves along the positive x axis with a speed of 4.1 x 105 m/s. It enters a region of uniform electric field parallel to its motion and comes to rest after moving 5.0 m into the field. What is the magnitude of the electric field (in N/C) ?
a particle moves aling a straight line and its position at time t is given by...
a particle moves aling a straight line and its position at time t is given by s(t)= (t^3)-13.5t^2+54t where s is measured in feet and t is seconds. consider t in the interval [0,infinity) 1) when is the particle moving in the positive direction? ( i tried (0,3) U(6, infinity) but it didnt work) 2) what is the total distance the particle travels travels between time 0 and time 7 3) when is the particle speeding up? 4) when is...
A particle moves along the x axis. It is initially at the position 0.250 m, moving...
A particle moves along the x axis. It is initially at the position 0.250 m, moving with velocity 0.070 m/s and acceleration -0.250 m/s2. Suppose it moves with constant acceleration for 3.90 s. Assume it moves with simple harmonic motion for 3.90 s and x = 0 is its equilibrium position. (a) Find its position. (b) Find its velocity at the end of this time interval.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT