In: Statistics and Probability
Consider some 8-sided dice. Roll two of these dice. Let X be the minimum of the two values that appear. Let Y denote the maximum.
a) Find the joint mass p_X,Y (x,y).
b) Compute p_X│Y (x│y) in all cases. Express your final answer in terms of a table.
Answer :
a)Given that :
Min of two values that appear = X
Maximum = Y
given dices through = 8
then we get the no.of possibilities = 8 * 8 = 64
there are :(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7) (3,8)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7) (4,8).................and
..........................................(8,8)
therefore,now p(X,Y) = 0 where X>Y
and p(X,Y) = 1/64 where X = Y
p(X,Y) = 2/64 = 1/32 where X<Y
for X = 1,2,3,4,5,6,7,8
and Y = 1,2,3,4,5,6,7,8
b)Now consider the joint mass probability function of p(X/Y)
p(X/Y) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Sum |
1 | 0.0156 | 0.0312 | 0.0312 | 0.0312 | 0.0312 | 0.0312 | 0.0312 | 0.0312 | 0.234 |
2 | 0.0156 | 0.0312 | 0.0312 | 0.0312 | 0.0312 | 0.0312 | 0.0312 | 0.203 | |
3 | 0.0156 | 0.0312 | 0.0312 | 0.0312 | 0.0312 | 0.0312 | 0.172 | ||
4 | 0.0156 | 0.0312 | 0.0312 | 0.0312 | 0.0312 | 0.140 | |||
5 | 0.0156 | 0.0312 | 0.0312 | 0.0312 | 0.109 | ||||
6 | 0.0156 | 0.0312 | 0.0312 | 0.078 | |||||
7 | 0.0156 | 0.0312 | 0.047 | ||||||
8 | 0.0156 | 0.0156 | |||||||
Sum | 0.156 | 0.0468 | 0.078 | 0.109 | 0.140 | 0.172 | 0.203 | 0.234 | 1 |