Question

In: Statistics and Probability

Suppose you roll two twenty-five-sided dice. Let X1, X2 the outcomes of the rolls of these...

Suppose you roll two twenty-five-sided dice. Let X1, X2 the outcomes of the rolls of these two fair dice which can be viewed as a random sample of size 2 from a uniform distribution on integers.

(b) List all possible samples and calculate the value of the sample mean ¯(X) and variance (s 2 ) for each sample?

(c) Obtain the sampling distribution of X¯ from this list by creating a frequency distribution table. You can create a frequency distribution table using Excel and share it on your file. Then calculate relative frequencies, i.e., f(x), which give the probabilities of the sampling distribution of X¯, and calculate the mean of the sampling distribution, i.e., xf(x). Check if that equals to (µ).

(d) Make a Histogram for the sampling distribution of X¯ you have obtained in (c). Use the Data Analysis Toolpak in Excel to make the Histogram. For Bins, use the Row Labels of the frequency tables you have created in (c).

Solutions

Expert Solution

ANSWER::

b.)

X1 X2
1 1 1 0
1 2 1.5 0.5
1 3 2 2
1 4 2.5 4.5
1 5 3 8
1 6 3.5 12.5
1 7 4 18
1 8 4.5 24.5
1 9 5 32
1 10 5.5 40.5
1 11 6 50
1 12 6.5 60.5
1 13 7 72
1 14 7.5 84.5
1 15 8 98
1 16 8.5 112.5
1 17 9 128
1 18 9.5 144.5
1 19 10 162
1 20 10.5 180.5
1 21 11 200
1 22 11.5 220.5
1 23 12 242
1 24 12.5 264.5
1 25 13 288
2 1 1.5 0.5
2 2 2 0
2 3 2.5 0.5
2 4 3 2
2 5 3.5 4.5
2 6 4 8
2 7 4.5 12.5
2 8 5 18
2 9 5.5 24.5
2 10 6 32
2 11 6.5 40.5
2 12 7 50
2 13 7.5 60.5
2 14 8 72
2 15 8.5 84.5
2 16 9 98
2 17 9.5 112.5
2 18 10 128
2 19 10.5 144.5
2 20 11 162
2 21 11.5 180.5
2 22 12 200
2 23 12.5 220.5
2 24 13 242
2 25 13.5 264.5
3 1 2 2
3 2 2.5 0.5
3 3 3 0
3 4 3.5 0.5
3 5 4 2
3 6 4.5 4.5
3 7 5 8
3 8 5.5 12.5
3 9 6 18
3 10 6.5 24.5
3 11 7 32
3 12 7.5 40.5
3 13 8 50
3 14 8.5 60.5
3 15 9 72
3 16 9.5 84.5
3 17 10 98
3 18 10.5 112.5
3 19 11 128
3 20 11.5 144.5
3 21 12 162
3 22 12.5 180.5
3 23 13 200
3 24 13.5 220.5
3 25 14 242
4 1 2.5 4.5
4 2 3 2
4 3 3.5 0.5
4 4 4 0
4 5 4.5 0.5
4 6 5 2
4 7 5.5 4.5
4 8 6 8
4 9 6.5 12.5
4 10 7 18
4 11 7.5 24.5
4 12 8 32
4 13 8.5 40.5
4 14 9 50
4 15 9.5 60.5
4 16 10 72
4 17 10.5 84.5
4 18 11 98
4 19 11.5 112.5
4 20 12 128
4 21 12.5 144.5
4 22 13 162
4 23 13.5 180.5
4 24 14 200
4 25 14.5 220.5
5 1 3 8
5 2 3.5 4.5
5 3 4 2
5 4 4.5 0.5
5 5 5 0
5 6 5.5 0.5
5 7 6 2
5 8 6.5 4.5
5 9 7 8
5 10 7.5 12.5
5 11 8 18
5 12 8.5 24.5
5 13 9 32
5 14 9.5 40.5
5 15 10 50
5 16 10.5 60.5
5 17 11 72
5 18 11.5 84.5
5 19 12 98
5 20 12.5 112.5
5 21 13 128
5 22 13.5 144.5
5 23 14 162
5 24 14.5 180.5
5 25 15 200
6 1 3.5 12.5
6 2 4 8
6 3 4.5 4.5
6 4 5 2
6 5 5.5 0.5
6 6 6 0
6 7 6.5 0.5
6 8 7 2
6 9 7.5 4.5
6 10 8 8
6 11 8.5 12.5
6 12 9 18
6 13 9.5 24.5
6 14 10 32
6 15 10.5 40.5
6 16 11 50
6 17 11.5 60.5
6 18 12 72
6 19 12.5 84.5
6 20 13 98
6 21 13.5 112.5
6 22 14 128
6 23 14.5 144.5
6 24 15 162
6 25 15.5 180.5
7 1 4 18
7 2 4.5 12.5
7 3 5 8
7 4 5.5 4.5
7 5 6 2
7 6 6.5 0.5
7 7 7 0
7 8 7.5 0.5
7 9 8 2
7 10 8.5 4.5
7 11 9 8
7 12 9.5 12.5
7 13 10 18
7 14 10.5 24.5
7 15 11 32
7 16 11.5 40.5
7 17 12 50
7 18 12.5 60.5
7 19 13 72
7 20 13.5 84.5
7 21 14 98
7 22 14.5 112.5
7 23 15 128
7 24 15.5 144.5
7 25 16 162
8 1 4.5 24.5
8 2 5 18
8 3 5.5 12.5
8 4 6 8
8 5 6.5 4.5
8 6 7 2
8 7 7.5 0.5
8 8 8 0
8 9 8.5 0.5
8 10 9 2
8 11 9.5 4.5
8 12 10 8
8 13 10.5 12.5
8 14 11 18
8 15 11.5 24.5
8 16 12 32
8 17 12.5 40.5
8 18 13 50
8 19 13.5 60.5
8 20 14 72
8 21 14.5 84.5
8 22 15 98
8 23 15.5 112.5
8 24 16 128
8 25 16.5 144.5
9 1 5 32
9 2 5.5 24.5
9 3 6 18
9 4 6.5 12.5
9 5 7 8
9 6 7.5 4.5
9 7 8 2
9 8 8.5 0.5
9 9 9 0
9 10 9.5 0.5
9 11 10 2
9 12 10.5 4.5
9 13 11 8
9 14 11.5 12.5
9 15 12 18
9 16 12.5 24.5
9 17 13 32
9 18 13.5 40.5
9 19 14 50
9 20 14.5 60.5
9 21 15 72
9 22 15.5 84.5
9 23 16 98
9 24 16.5 112.5
9 25 17 128
10 1 5.5 40.5
10 2 6 32
10 3 6.5 24.5
10 4 7 18
10 5 7.5 12.5
10 6 8 8
10 7 8.5 4.5
10 8 9 2
10 9 9.5 0.5
10 10 10 0
10 11 10.5 0.5
10 12 11 2
10 13 11.5 4.5
10 14 12 8
10 15 12.5 12.5
10 16 13 18
10 17 13.5 24.5
10 18 14 32
10 19 14.5 40.5
10 20 15 50
10 21 15.5 60.5
10 22 16 72
10 23 16.5 84.5
10 24 17 98
10 25 17.5 112.5
11 1 6 50
11 2 6.5 40.5
11 3 7 32
11 4 7.5 24.5
11 5 8 18
11 6 8.5 12.5
11 7 9 8
11 8 9.5 4.5
11 9 10 2
11 10 10.5 0.5
11 11 11 0
11 12 11.5 0.5
11 13 12 2
11 14 12.5 4.5
11 15 13 8
11 16 13.5 12.5
11 17 14 18
11 18 14.5 24.5
11 19 15 32
11 20 15.5 40.5
11 21 16 50
11 22 16.5 60.5
11 23 17 72
11 24 17.5 84.5
11 25 18 98
12 1 6.5 60.5
12 2 7 50
12 3 7.5 40.5
12 4 8 32
12 5 8.5 24.5
12 6 9 18
12 7 9.5 12.5
12 8 10 8
12 9 10.5 4.5
12 10 11 2
12 11 11.5 0.5
12 12 12 0
12 13 12.5 0.5
12 14 13 2
12 15 13.5 4.5
12 16 14 8
12 17 14.5 12.5
12 18 15 18
12 19 15.5 24.5
12 20 16 32
12 21 16.5 40.5
12 22 17 50
12 23 17.5 60.5
12 24 18 72
12 25 18.5 84.5
13 1 7 72
13 2 7.5 60.5
13 3 8 50
13 4 8.5 40.5
13 5 9 32
13 6 9.5 24.5
13 7 10 18
13 8 10.5 12.5
13 9 11 8
13 10 11.5 4.5
13 11 12 2
13 12 12.5 0.5
13 13 13 0
13 14 13.5 0.5
13 15 14 2
13 16 14.5 4.5
13 17 15 8
13 18 15.5 12.5
13 19 16 18
13 20 16.5 24.5
13 21 17 32
13 22 17.5 40.5
13 23 18 50
13 24 18.5 60.5
13 25 19 72
14 1 7.5 84.5
14 2 8 72
14 3 8.5 60.5
14 4 9 50
14 5 9.5 40.5
14 6 10 32
14 7 10.5 24.5
14 8 11 18
14 9 11.5 12.5
14 10 12 8
14 11 12.5 4.5
14 12 13 2
14 13 13.5 0.5
14 14 14 0
14 15 14.5 0.5
14 16 15 2
14 17 15.5 4.5
14 18 16 8
14 19 16.5 12.5
14 20 17 18
14 21 17.5 24.5
14 22 18 32
14 23 18.5 40.5
14 24 19 50
14 25 19.5 60.5
15 1 8 98
15 2 8.5 84.5
15 3 9 72
15 4 9.5 60.5
15 5 10 50
15 6 10.5 40.5
15 7 11 32
15 8 11.5 24.5
15 9 12 18
15 10 12.5 12.5
15 11 13 8
15 12 13.5 4.5
15 13 14 2
15 14 14.5 0.5
15 15 15 0
15 16 15.5 0.5
15 17 16 2
15 18 16.5 4.5
15 19 17 8
15 20 17.5 12.5
15 21 18 18
15 22 18.5 24.5
15 23 19 32
15 24 19.5 40.5
15 25 20 50
16 1 8.5 112.5
16 2 9 98
16 3 9.5 84.5
16 4 10 72
16 5 10.5 60.5
16 6 11 50
16 7 11.5 40.5
16 8 12 32
16 9 12.5 24.5
16 10 13 18
16 11 13.5 12.5
16 12 14 8
16 13 14.5 4.5
16 14 15 2
16 15 15.5 0.5
16 16 16 0
16 17 16.5 0.5
16 18 17 2
16 19 17.5 4.5
16 20 18 8
16 21 18.5 12.5
16 22 19 18
16 23 19.5 24.5
16 24 20 32
16 25 20.5 40.5
17 1 9 128
17 2 9.5 112.5
17 3 10 98
17 4 10.5 84.5
17 5 11 72
17 6 11.5 60.5
17 7 12 50
17 8 12.5 40.5
17 9 13 32
17 10 13.5 24.5
17 11 14 18
17 12 14.5 12.5
17 13 15 8
17 14 15.5 4.5
17 15 16 2
17 16 16.5 0.5
17 17 17 0
17 18 17.5 0.5
17 19 18 2
17 20 18.5 4.5
17 21 19 8
17 22 19.5 12.5
17 23 20 18
17 24 20.5 24.5
17 25 21 32
18 1 9.5 144.5
18 2 10 128
18 3 10.5 112.5
18 4 11 98
18 5 11.5 84.5
18 6 12 72
18 7 12.5 60.5
18 8 13 50
18 9 13.5 40.5
18 10 14 32
18 11 14.5 24.5
18 12 15 18
18 13 15.5 12.5
18 14 16 8
18 15 16.5 4.5
18 16 17 2
18 17 17.5 0.5
18 18 18 0
18 19 18.5 0.5
18 20 19 2
18 21 19.5 4.5
18 22 20 8
18 23 20.5 12.5
18 24 21 18
18 25 21.5 24.5
19 1 10 162
19 2 10.5 144.5
19 3 11 128
19 4 11.5 112.5
19 5 12 98
19 6 12.5 84.5
19 7 13 72
19 8 13.5 60.5
19 9 14 50
19 10 14.5 40.5
19 11 15 32
19 12 15.5 24.5
19 13 16 18
19 14 16.5 12.5
19 15 17 8
19 16 17.5 4.5
19 17 18 2
19 18 18.5 0.5
19 19 19 0
19 20 19.5 0.5
19 21 20 2
19 22 20.5 4.5
19 23 21 8
19 24 21.5 12.5
19 25 22 18
20 1 10.5 180.5
20 2 11 162
20 3 11.5 144.5
20 4 12 128
20 5 12.5 112.5
20 6 13 98
20 7 13.5 84.5
20 8 14 72
20 9 14.5 60.5
20 10 15 50
20 11 15.5 40.5
20 12 16 32
20 13 16.5 24.5
20 14 17 18
20 15 17.5 12.5
20 16 18 8
20 17 18.5 4.5
20 18 19 2
20 19 19.5 0.5
20 20 20 0
20 21 20.5 0.5
20 22 21 2
20 23 21.5 4.5
20 24 22 8
20 25 22.5 12.5
21 1 11 200
21 2 11.5 180.5
21 3 12 162
21 4 12.5 144.5
21 5 13 128
21 6 13.5 112.5
21 7 14 98
21 8 14.5 84.5
21 9 15 72
21 10 15.5 60.5
21 11 16 50
21 12 16.5 40.5
21 13 17 32
21 14 17.5 24.5
21 15 18 18
21 16 18.5 12.5
21 17 19 8
21 18 19.5 4.5
21 19 20 2
21 20 20.5 0.5
21 21 21 0
21 22 21.5 0.5
21 23 22 2
21 24 22.5 4.5
21 25 23 8
22 1 11.5 220.5
22 2 12 200
22 3 12.5 180.5
22 4 13 162
22 5 13.5 144.5
22 6 14 128
22 7 14.5 112.5
22 8 15 98
22 9 15.5 84.5
22 10 16 72
22 11 16.5 60.5
22 12 17 50
22 13 17.5 40.5
22 14 18 32
22 15 18.5 24.5
22 16 19 18
22 17 19.5 12.5
22 18 20 8
22 19 20.5 4.5
22 20 21 2
22 21 21.5 0.5
22 22 22 0
22 23 22.5 0.5
22 24 23 2
22 25 23.5 4.5
23 1 12 242
23 2 12.5 220.5
23 3 13 200
23 4 13.5 180.5
23 5 14 162
23 6 14.5 144.5
23 7 15 128
23 8 15.5 112.5
23 9 16 98
23 10 16.5 84.5
23 11 17 72
23 12 17.5 60.5
23 13 18 50
23 14 18.5 40.5
23 15 19 32
23 16 19.5 24.5
23 17 20 18
23 18 20.5 12.5
23 19 21 8
23 20 21.5 4.5
23 21 22 2
23 22 22.5 0.5
23 23 23 0
23 24 23.5 0.5
23 25 24 2
24 1 12.5 264.5
24 2 13 242
24 3 13.5 220.5
24 4 14 200
24 5 14.5 180.5
24 6 15 162
24 7 15.5 144.5
24 8 16 128
24 9 16.5 112.5
24 10 17 98
24 11 17.5 84.5
24 12 18 72
24 13 18.5 60.5
24 14 19 50
24 15 19.5 40.5
24 16 20 32
24 17 20.5 24.5
24 18 21 18
24 19 21.5 12.5
24 20 22 8
24 21 22.5 4.5
24 22 23 2
24 23 23.5 0.5
24 24 24 0
24 25 24.5 0.5
25 1 13 288
25 2 13.5 264.5
25 3 14 242
25 4 14.5 220.5
25 5 15 200
25 6 15.5 180.5
25 7 16 162
25 8 16.5 144.5
25 9 17 128
25 10 17.5 112.5
25 11 18 98
25 12 18.5 84.5
25 13 19 72
25 14 19.5 60.5
25 15 20 50
25 16 20.5 40.5
25 17 21 32
25 18 21.5 24.5
25 19 22 18
25 20 22.5 12.5
25 21 23 8
25 22 23.5 4.5
25 23 24 2
25 24 24.5 0.5
25 25 25 0

c.)

x Frequency Relative frequency (=f(x)=frequency/625) xf(x)
1 1 0.0016 0.0016
1.5 2 0.0032 0.0048
2 3 0.0048 0.0096
2.5 4 0.0064 0.016
3 5 0.008 0.024
3.5 6 0.0096 0.0336
4 7 0.0112 0.0448
4.5 8 0.0128 0.0576
5 9 0.0144 0.072
5.5 10 0.016 0.088
6 11 0.0176 0.1056
6.5 12 0.0192 0.1248
7 13 0.0208 0.1456
7.5 14 0.0224 0.168
8 15 0.024 0.192
8.5 16 0.0256 0.2176
9 17 0.0272 0.2448
9.5 18 0.0288 0.2736
10 19 0.0304 0.304
10.5 20 0.032 0.336
11 21 0.0336 0.3696
11.5 22 0.0352 0.4048
12 23 0.0368 0.4416
12.5 24 0.0384 0.48
13 25 0.04 0.52
13.5 24 0.0384 0.5184
14 23 0.0368 0.5152
14.5 22 0.0352 0.5104
15 21 0.0336 0.504
15.5 20 0.032 0.496
16 19 0.0304 0.4864
16.5 18 0.0288 0.4752
17 17 0.0272 0.4624
17.5 16 0.0256 0.448
18 15 0.024 0.432
18.5 14 0.0224 0.4144
19 13 0.0208 0.3952
19.5 12 0.0192 0.3744
20 11 0.0176 0.352
20.5 10 0.016 0.328
21 9 0.0144 0.3024
21.5 8 0.0128 0.2752
22 7 0.0112 0.2464
22.5 6 0.0096 0.216
23 5 0.008 0.184
23.5 4 0.0064 0.1504
24 3 0.0048 0.1152
24.5 2 0.0032 0.0784
25 1 0.0016 0.04
Sum: 625 1 13

d.)

NOTE:: I HOPE YOUR HAPPY WITH MY ANSWER....***PLEASE SUPPORT ME WITH YOUR RATING...

***PLEASE GIVE ME "LIKE"...ITS VERY IMPORTANT FOR ME NOW....PLEASE SUPPORT ME ....THANK YOU


Related Solutions

If you roll two six-sided dice, what is the probability of obtaining the following outcomes? a)2...
If you roll two six-sided dice, what is the probability of obtaining the following outcomes? a)2 or 3 b) 6 and 4 c) At least one 5 d) Two of the same number (two 1s, or two 2s, or two 3s, etc.) e) An even number on both dice f) An even number on at least one die
Consider some 8-sided dice. Roll two of these dice. Let X be the minimum of the...
Consider some 8-sided dice. Roll two of these dice. Let X be the minimum of the two values that appear. Let Y denote the maximum.   a) Find the joint mass p_X,Y (x,y). b) Compute p_X│Y (x│y) in all cases. Express your final answer in terms of a table.
You roll two 6-sided dice numbered 1 through 6. Let A be the event that the...
You roll two 6-sided dice numbered 1 through 6. Let A be the event that the first die shows the number 3, let B be the event that the second die shows a 5, and let E be the event that the sum of the two numbers showing is even. Compute P(A)and P(B)and then compute P(AlB). What does this tell you about events A and B?Hint: Remember that the sample space has 36 outcomes! Compute P(ElA)and compute P(E). What does...
Suppose you roll two 6 sided dice, letting X be the sum of the numbers shown...
Suppose you roll two 6 sided dice, letting X be the sum of the numbers shown on the dice and Y be the number of dice that show an odd number. a) Find the joint pmf of <X,Y> b) Find the marginals pmf's for both variables. c) Are X and Y independent?
Suppose you roll two 6 sided dice, letting X be the sum of the numbers shown...
Suppose you roll two 6 sided dice, letting X be the sum of the numbers shown on the dice and Y be the number of dice that show an odd number. a) Find the joint pmf of <X,Y> b) Find the marginals pmf's for both variables. c) Are X and Y independent?
Suppose you roll two 6-sided dice, letting X be the sum of the numbers shown on...
Suppose you roll two 6-sided dice, letting X be the sum of the numbers shown on the dice and Y be the number of dice that show an odd number. a) Find the joint pmf of <X,Y> b) Find the maringals pmf's for both variables. c) Are X and Y independent?
You roll two fair dice. Let A be the event that the sum of the dice...
You roll two fair dice. Let A be the event that the sum of the dice is an even number. Let B be the event that the two results are different. (a) Given B has occurred, what is the probability A has also occurred? (b) Given A has occurred, what is the probability B has also occurred? (c) What is the probability of getting a sum of 9? (d) Given that the sum of the pair of dice is 9...
Suppose you roll, two 6-sided dice (refer back to the sample space in the sample space...
Suppose you roll, two 6-sided dice (refer back to the sample space in the sample space notes). Write any probability as a decimal to three place values and the odds using a colon. Determine the following: a. the probability that you roll a sum of seven (7) is . b. The odds for rolling a sum of four (4) is . c. The odds against the numbers on both dice being the same is .
suppose he roll two dice one black and one red you record the outcomes in order...
suppose he roll two dice one black and one red you record the outcomes in order for example the outcome (35) notes at three on the black die And a five on the red dye. What a beauty event that the black guy is even, B be the event at the red dye is odd, and C be the event that the dice sum to 10 (a) List and describe the outcomes in the sample space S and the events...
suppose you roll two fair dice. A) what is the probability that you will roll an...
suppose you roll two fair dice. A) what is the probability that you will roll an even number on the first die AND a 5 on the second die B) What is the probability that the sum of the numbers on the two dice is 9? show all work.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT