Question

In: Physics

Consider the following: (i) blue light of wavelength 450 nm, traveling through water (ii) yellow light...

Consider the following:
(i) blue light of wavelength 450 nm, traveling through water

(ii) yellow light of wavelength 580 nm, traveling through air

(iii) red light of wavelength 670 nm, traveling through glass

a) Calculate the speeds of each color of light in their respective mediums.
b) Rank from slowest-to-fastest these colors of light in their respective mediums.

c) Rank from slowest-to-fastest these colors of light in vacuum.

Solutions

Expert Solution

In given problem Speed of color can be find using below formula

.

  

Where V= speed of color in medium

C= speed of color in Vacuum=3*108 m/s

All the colors travel with same speed (3*108 m/s) in Vacuum.


Related Solutions

Blue light of wavelength 470 nm passes through an interference grating with a slit spacing of0.001...
Blue light of wavelength 470 nm passes through an interference grating with a slit spacing of0.001 mm and makes an interference pattern on the wall. How many bright fringes will be seen?
The emission wavelength lies between 275 nm and 450 nm and the light yield per neutron...
The emission wavelength lies between 275 nm and 450 nm and the light yield per neutron is reported to be 20000 photons/MeV neutron energy (a) What largest work function of a material used for a photo cathode would be acceptable that still allows detection of an emission originating from the scintillator? (b) What is the maximum kinetic energy of electrons emitted from the photo cathode, given the emission wavelength range of the scintillator? (c) How much charge is being generated...
1.Consider a 465 nm wavelength blue light falling on a pair of slits separated by 0.055...
1.Consider a 465 nm wavelength blue light falling on a pair of slits separated by 0.055 mm. A) At what angle (in degrees) is the first-order maximum for the blue light? \ 2.Suppose you have a lens system that is to be used primarily for 690 nm red light. B)What is the second thinnest coating of magnesium fluorite, which has an index of refraction of n = 1.38, that would be non-reflective for this wavelength? Assume the index of refraction...
1, Which carries more energy, yellow light with a wavelength of 580 nm or green light...
1, Which carries more energy, yellow light with a wavelength of 580 nm or green light with a wavelength of 560 nm? (Explain or show a calculation). 2,Why do we see a characteristic color (in the flame) for each cation? 4,The energy of an electron in n = 1 for a hydrogen atoms was found to be -2.179 x10-18 J/atom. Convert this value to kJ/mole. 5,Calculate the energy of light emitted when an electron changes from n = 3 to...
A photoelectric experiment was performed by separately shining a laser at 450 nm (blue light) and...
A photoelectric experiment was performed by separately shining a laser at 450 nm (blue light) and a laser at 560 nm (yellow light) on a clean metal surface and measuring the number and kinetic energy of the ejected electrons. Which light would generate more electrons? Which light would eject electrons with greater kinetic energy? Assume that the same number of photons is delivered to the metal surface by each laser and that the frequencies of the laser lights exceed the...
Blue light of wavelength 470 nm is used to illuminate a pair of narrow slits that...
Blue light of wavelength 470 nm is used to illuminate a pair of narrow slits that are 0.020 mm apart and 1.60 m from a screen. (a) What is the angular position of the second-order minimum (dark spot)? (b) What is the distance on the screen between the central maximum and the second-order minimum? (c) The reason there is a dark spot at this location on the screen is because light from one slit has to travel further than light...
A Blackbody radiator emits blue light with a wavelength of 475 nanometres (nm). a) Describe what...
A Blackbody radiator emits blue light with a wavelength of 475 nanometres (nm). a) Describe what a “Blackbody radiator” is. b) How much energy is being produced by each blue light photon emitted (in units of joules AND electron-volts)?
Light with a wavelength of 616 nm passes through a slit 7.74 μm wide and falls...
Light with a wavelength of 616 nm passes through a slit 7.74 μm wide and falls on a screen 1.90 m away. Q : Find the linear distance on the screen from the central bright fringe to the first bright fringe above it.
Consider red light with a wavelength of 690 nm in air that is incident onto two...
Consider red light with a wavelength of 690 nm in air that is incident onto two slits such that it gives diffraction fringes that are 1.00 mm apart on a screen at a distance L from the slits. If the screen is moved back by an additional 8.00 cm, the fringes become 1.40 mm apart. What is the separation between the slits? (a) 0.109 mm, (b) 0.138 mm, (c) 0.177 mm, (d) 0.218 mm, (e) 0.276 mm.
Light with wavelength 530 nm in air (n = 1) passes through a soap bubble (n...
Light with wavelength 530 nm in air (n = 1) passes through a soap bubble (n = 1.33), where its wavelength becomes ≈ 400 nm. A What is the phase difference between a light wave reflected off the surface of the bubble and one that passes into it before being reflected? B The thickness of the bubble is 100 nm. Does this lead to constructive or destructive interference? C What would happen for a soap film covering a glass surface...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT