Question

In: Physics

1 kg / s of steam is compressed in an adiabatic compressor from 200 kPa and...

1 kg / s of steam is compressed in an adiabatic compressor from 200 kPa and 200 ° C to 3000 kPa and 400 ° C. How powerful is the compressor? is this transformation possible (briefly argue)?

Solutions

Expert Solution


Related Solutions

Steam is compressed by an adiabatic compressor from 3 bar and 160°C to 10 bar and...
Steam is compressed by an adiabatic compressor from 3 bar and 160°C to 10 bar and 350°C at a rate of 1.30 kg/s. The power input to the compressor is 626 kW 481.6 kW 370.5 kW 284.8
An air compressor operating in adiabatic steady flow takes in air at 17 C, 200 kPa...
An air compressor operating in adiabatic steady flow takes in air at 17 C, 200 kPa and discharges is at 1300 kPa. Calculate the minimum work required to drive the compressor assuming the compressor has i) constant specific heats. ii) non-constant specific heats.
air is compressed in an adiabatic and isentropic compressor from 14 psia and 60F to 210...
air is compressed in an adiabatic and isentropic compressor from 14 psia and 60F to 210 psia. Determine the outlet temperature [F] and the work consumed by this compressor per unit mas of air [Btu/lbm]. Assume constant specific heats at T=100F Please explain table look ups, thank you!
Air enters the compressor at 100 kPa, 300 K and is compressed to 1000 kPa. The...
Air enters the compressor at 100 kPa, 300 K and is compressed to 1000 kPa. The temperature at the inlet to the first turbine stage is 1400 K. The expansion takes place isentropically in two stages, with reheat to 1400 K between the stages at a constant pressure of 300 kPa. A regenerator having an effectiveness of 100% is also incorporated into the cycle. The turbine and the compressor each have am isentropic efficiency of 80%. Determine the following: (a.)...
An adiabatic steam turbine receives 50 kg/s of superheated steam at 5 MPa and 500oC. Steam...
An adiabatic steam turbine receives 50 kg/s of superheated steam at 5 MPa and 500oC. Steam exits the turbine with a pressure of 100 kPa. Determine the minimum exit quality and the maximum power output of the turbine in kW.
A mass flow rate of 2 kg/s of steam is expanded in an adiabatic turbine with...
A mass flow rate of 2 kg/s of steam is expanded in an adiabatic turbine with an isentropic efficiency of 0.92. The steam enters at 3 MPa and 400 C and leaves at 30 kPa. Determine how much power the turbine is producing. Express your result in kW. (Sol: 1649 kW)
Air enters an adiabatic compressor at 100 kPa (absolute) and 20 ºC at a rate of...
Air enters an adiabatic compressor at 100 kPa (absolute) and 20 ºC at a rate of 0.075 m3 /s, and it exits at a pressure of 900 kPa (absolute). The compressor has an isentropic efficiency of 70 percent. Neglecting the changes in kinetic and potential energies, determine (a) the exit temperature of air and (b) the power required to drive the compressor.
a steam compressor is operated sisaadly at 30 kpa with quality of 80% and leaves at...
a steam compressor is operated sisaadly at 30 kpa with quality of 80% and leaves at 8.5 mpa 600c.the velocity of the steam going into the compressor is 1220 m/s.a heat loss of 50 kj/kg is occured during the process. based on the design the compressor has an inlet area of 50cm^2 and an exit area 120cm^2. answer all the following questions: a) list all given and required properties for each state. b) determine mass flow rate of the steam....
An adiabatic air compressor with inlet conditions of 100 kPa, 27 C and an exit pressure...
An adiabatic air compressor with inlet conditions of 100 kPa, 27 C and an exit pressure of 500 kPa has an inlet volume flow rate of 5 m3/s and operates in steady flow. Calculate the minimum power required to drive the compressor.
Refrigerant-134a enters an adiabatic compressor as saturated vapor at 160 kPa at a rate of 2.8...
Refrigerant-134a enters an adiabatic compressor as saturated vapor at 160 kPa at a rate of 2.8 m3/min and is compressed to a pressure of 900 kPa. Determine the minimum power that must be supplied to the compressor. Use the tables for R-134a. The minimum power that must be supplied to the compressor
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT