In: Math
A furniture store has maintained monthly sales records for the past 20 months, with the results shown below.
| 
 Month  | 
 Sales  | 
| 
 1  | 
 2360  | 
| 
 2  | 
 1820  | 
| 
 3  | 
 1760  | 
| 
 4  | 
 1560  | 
| 
 5  | 
 1950  | 
| 
 6  | 
 1950  | 
| 
 7  | 
 3360  | 
| 
 8  | 
 1740  | 
| 
 9  | 
 3780  | 
| 
 10  | 
 2400  | 
| 
 11  | 
 2160  | 
| 
 12  | 
 2760  | 
| 
 13  | 
 3570  | 
| 
 14  | 
 2820  | 
| 
 15  | 
 2800  | 
| 
 16  | 
 1890  | 
| 
 17  | 
 2500  | 
| 
 18  | 
 3630  | 
| 
 19  | 
 2530  | 
| 
 20  | 
 3270  | 
Assume you have determined there is NO SEASONALITY in this time series. Therefore, you want to fit a linear trend model (that is, trend only) to the data.
Calculate the linear trend equation. (Round coefficients to the nearest whole number.)
y Subscript t Baseline equalsyt=nothing+
nothing*t
What are the test statistic and p-value to test for a significant trend. Round both to two decimal places.
T = nothing
p-value = nothing
Is the trend significant using a 10% significance level?
Yes
No
What is the value of R-squared? (Round to two decimals.)
nothing
Forecast the sales for the next month (t = 21). (Round to the nearest whole number.)
Upper F 21 equalsF21=nothing
Based on the R-squared value, how confident are you in this forecast? (That is, how accurate do you think the forecasts will be?)
A.
Not confident at all because the R-squared value is so low
B.
Very confident because the R-squared value is high
C.
Somewhat confident because the R-squared value is moderate (not extremely high but not extemely low)
| x | y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) | 
| 1 | 2360 | 90.25 | 29070.25 | 1619.75 | 
| 2 | 1820 | 72.25 | 504810.25 | 6039.25 | 
| 3 | 1760 | 56.25 | 593670.25 | 5778.75 | 
| 4 | 1560 | 42.25 | 941870.25 | 6308.25 | 
| 5 | 1950 | 30.25 | 336980.25 | 3192.75 | 
| 6 | 1950 | 20.25 | 336980.25 | 2612.25 | 
| 7 | 3360 | 12.25 | 688070.25 | -2903.25 | 
| 8 | 1740 | 6.25 | 624890.25 | 1976.25 | 
| 9 | 3780 | 2.25 | 1561250.25 | -1874.25 | 
| 10 | 2400 | 0.25 | 17030.25 | 65.25 | 
| 11 | 2160 | 0.25 | 137270.25 | -185.25 | 
| 12 | 2760 | 2.25 | 52670.25 | 344.25 | 
| 13 | 3570 | 6.25 | 1080560.25 | 2598.75 | 
| 14 | 2820 | 12.25 | 83810.25 | 1013.25 | 
| 15 | 2800 | 20.25 | 72630.25 | 1212.75 | 
| 16 | 1890 | 30.25 | 410240.25 | -3522.75 | 
| 17 | 2500 | 42.25 | 930.25 | -198.25 | 
| 18 | 3630 | 56.25 | 1208900.25 | 8246.25 | 
| 19 | 2530 | 72.25 | 0.25 | -4.25 | 
| 20 | 3270 | 90.25 | 546860.25 | 7025.25 | 
| ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
| total sum | 210 | 50610 | 665 | 9228495.0 | 39345.00 | 
| mean | 10.50 | 2530.50 | SSxx | SSyy | SSxy | 
sample size ,   n =   20  
       
here, x̅ = Σx / n=   10.50   ,
    ȳ = Σy/n =  
2530.50  
          
       
SSxx =    Σ(x-x̅)² =    665.0000  
       
SSxy=   Σ(x-x̅)(y-ȳ) =   39345.0  
       
          
       
estimated slope , ß1 = SSxy/SSxx =   39345.0  
/   665.000   =   59.16541
          
       
intercept,   ß0 = y̅-ß1* x̄ =  
1909.26316          
          
       
so, regression line is   Ŷ =   1909
+   59*x
-----------
estimated std error of slope =Se(ß1) = Se/√Sxx =   
619.168   /√   665.00   =  
24.0103
          
       
t stat = estimated slope/std error =ß1 /Se(ß1) =
   59.1654   /   24.0103  
=   2.46
p-value = 0.024
Is the trend significant using a 10% significance level?
Yes
---------------
R² = (Sxy)²/(Sx.Sy) = 0.25
Predicted Y at X=   21   is  
           
   
F21  =   1909.2632  
+   59.1654   *   21  
=   3152
-----------
Not confident at all because the R-squared value is so low