Question

In: Statistics and Probability

1. Let X1 and X2 be continuous distributions uniformly distributed across the region [0, 2] ×...

1. Let X1 and X2 be continuous distributions uniformly distributed across the region [0, 2] × [0, 2] U (2, 4] × (2, 4].

a) Find the joint probability density function as well as marginal probability density function of X1 and X2.

b) Prove that X1 and X2 are not independent by showing cov(X1, X2) != 0.

Solutions

Expert Solution

Given that X1 and X2 be two uniformly distributed random variables.

Regions are given to be:

(i.e) [ interval for x1*interval for x2] U [interval for x1*interval for x2]

Since union of cartesian products of intervals are given as regions we split the intervals for X1 and X2.

(i.e) X1​ [0,2]U(2,4] and X2​ [0,2]U(2,4]

The probability density function of uniform distribution is given by,

  

where a<x<b, a and b are constants.

(a)JOINT PROBABILITY DENSITY FUNCTION OF X1 AND X2​:

  

MARGINAL DENSITY FUNCTION OF X1 :

  

MARGINAL DENSITY FUNCTION OF X2 :

  

(b)COVARIANCE OF X1 AND X2:

The formula for covariance is

Cov(X1,X2)=E(X1*X2)-E(X1)*E(X2)

  

  

  

  

  

Thus

  

  

THUS X1 AND X2 ARE NOT INDEPENDENT​.


Related Solutions

Let X1 and X2 be uniformly distributed in the region [−1,1]×[0,1]∪(1,2]×(1,3]. 1. Find Joint and Marginal...
Let X1 and X2 be uniformly distributed in the region [−1,1]×[0,1]∪(1,2]×(1,3]. 1. Find Joint and Marginal pdf of X1 and X2. 2.Find V (X1 + 3X2) ,( I‘ve asked this question already, but the person didn't give me the correct answer, so please, dont waste my question, if you dont know how to answer this question.)
2. Let X1, X2, . . . , Xn be independent, uniformly distributed random variables on...
2. Let X1, X2, . . . , Xn be independent, uniformly distributed random variables on the interval [0, θ]. (a) Find the pdf of X(j) , the j th order statistic. (b) Use the result from (a) to find E(X(j)). (c) Use the result from (b) to find E(X(j)−X(j−1)), the mean difference between two successive order statistics. (d) Suppose that n = 10, and X1, . . . , X10 represents the waiting times that the n = 10...
Let X1 and X2 have the joint pdf f(x1,x2) = 2 0<x1<x2<1; 0.  elsewhere (a) Find the...
Let X1 and X2 have the joint pdf f(x1,x2) = 2 0<x1<x2<1; 0.  elsewhere (a) Find the conditional densities (pdf) of X1|X2 = x2 and X2|X1 = x1. (b) Find the conditional expectation and variance of X1|X2 = x2 and X2|X1 = x1. (c) Compare the probabilities P(0 < X1 < 1/2|X2 = 3/4) and P(0 < X1 < 1/2). (d) Suppose that Y = E(X2|X1). Verify that E(Y ) = E(X2), and that var(Y ) ≤ var(X2).
Let U and V be independent continuous random variables uniformly distributed from 0 to 1. Let...
Let U and V be independent continuous random variables uniformly distributed from 0 to 1. Let X = max(U, V). What is Cov(X, U)?
Let X1, X2, X3 be continuous random variables with joint pdf f(X1, X2, X3)= 2 if...
Let X1, X2, X3 be continuous random variables with joint pdf f(X1, X2, X3)= 2 if 1<X1<2 -1<X2<0 -X2-1<X3<0                         0 otherwise Find Cov(X2, X3)
Let X1,X2,… be a sequence of independent random variables, uniformly distributed on [0,1]. Define Nn to...
Let X1,X2,… be a sequence of independent random variables, uniformly distributed on [0,1]. Define Nn to be the smallest k such that X1+X2+⋯+Xn exceeds cn=n2+12n−−√, namely, Nn = min{k≥1:X1+X2+⋯+Xk>ck} Does the limit limn→∞P(Nn>n) exist? If yes, enter its numerical value. If not, enter −999. unanswered Submit You have used 1 of 3 attempts Some problems have options such as save, reset, hints, or show answer. These options follow the Submit button.
Let X1 and X2 be independent standard normal variables X1 ∼ N(0, 1) and X2 ∼...
Let X1 and X2 be independent standard normal variables X1 ∼ N(0, 1) and X2 ∼ N(0, 1). 1) Let Y1 = X12 + X12 and Y2 = X12− X22 . Find the joint p.d.f. of Y1 and Y2, and the marginal p.d.f. of Y1. Are Y1 and Y2 independent? 2) Let W = √X1X2/(X12 +X22) . Find the p.d.f. of W.
Let Y and Z be independent continuous random variables, both uniformly distributed between 0 and 1....
Let Y and Z be independent continuous random variables, both uniformly distributed between 0 and 1. 1. Find the CDF of |Y − Z|. 2. Find the PDF of |Y − Z|.
6. Let X1, X2, ..., X101 be 101 independent U[0,1] random variables (meaning uniformly distributed on...
6. Let X1, X2, ..., X101 be 101 independent U[0,1] random variables (meaning uniformly distributed on the unit interval). Let M be the middle value among the 101 numbers, with 50 values less than M and 50 values greater than M. (a). Find the approximate value of P( M < 0.45 ). (b). Find the approximate value of P( | M- 0.5 | < 0.001 ), the probability that M is within 0.001 of 1/2.
Let X1 and X2 be independent identically distributed random variables with pmf p(0) = 1/4, p(1)...
Let X1 and X2 be independent identically distributed random variables with pmf p(0) = 1/4, p(1) = 1/2, p(2) = 1/4 (a) What is the probability mass function (pmf) of X1 + X2? (b) What is the probability mass function (pmf) of X(2) = max{X1, X2}? (c) What is the MGF of X1? (d) What is the MGF of X1 + X2
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT