Question

In: Statistics and Probability

lambda=c(.5,1,10);n=50;nboot=100 est=matrix(0,nboot,2) for(i in 1:3) { x=NULL;y=NULL;z=NULL x=rpois(n,lambda[i]) l1=mean(x) l2=log(n/length(x[x==0])) y = rpois(n*nboot, l1);z=rpois(n*nboot, l2) bootstrapsample1...

lambda=c(.5,1,10);n=50;nboot=100
est=matrix(0,nboot,2)
for(i in 1:3)
{
x=NULL;y=NULL;z=NULL
x=rpois(n,lambda[i])
l1=mean(x)
l2=log(n/length(x[x==0]))
y = rpois(n*nboot, l1);z=rpois(n*nboot, l2)
bootstrapsample1 = matrix(y, nrow=nboot, ncol=n)
bootstrapsample2 = matrix(z, nrow=nboot, ncol=n)
for(j in 1:nboot)
{
est[j,1]=mean(bootstrapsample1[j,])
est[j,2]=log(length(bootstrapsample1[j,][bootstrapsample1[j,]>0]))
}
}

Solutions

Expert Solution


Related Solutions

Determine whether the lines and are parallel, skew, or intersecting. L1:X=1+2t, Y=2+3t , z=3+4t L2: X=-1+6s,...
Determine whether the lines and are parallel, skew, or intersecting. L1:X=1+2t, Y=2+3t , z=3+4t L2: X=-1+6s, Y=3-s ,z=-5+2s
1A) Use surface integral to evaluate the flux of F(x,y,z) =<x^3,y^3,z^3> across the cylinder x^2+y^2=1, 0<=z<=2...
1A) Use surface integral to evaluate the flux of F(x,y,z) =<x^3,y^3,z^3> across the cylinder x^2+y^2=1, 0<=z<=2 1B) Use the Divergence Theorem to evaluate the flux of F(x,y,z) =<x^3,y^3,z^3> across the cylinder x^2+y^2=1, 0<=z<=2
Mystery(y, z: positive integer) 1 x=0 2 while z > 0 3       if z mod 2...
Mystery(y, z: positive integer) 1 x=0 2 while z > 0 3       if z mod 2 ==1 then 4                x = x + y 5       y = 2y 6       z = floor(z/2)           //floor is the rounding down operation 7 return x Simulate this algorithm for y=4 and z=7 and answer the following questions: (3 points) At the end of the first execution of the while loop, x=_____, y=______ and z=_______. (3 points) At the end of the second execution of...
Use simulation to prove that when X ∼ N(0, 1), Z ∼ N(0, 1), Y =...
Use simulation to prove that when X ∼ N(0, 1), Z ∼ N(0, 1), Y = X3 + 10X +Z, we have V ar(X +Y ) = V ar(X) +V ar(Y ) + 2Cov(X, Y ) and V ar(X −Y ) = V ar(X) + V ar(Y ) − 2Cov(X, Y ).
Velocity field for this system is: V=[X^2-(y*z^1/2/t)]i-[z*y^3+(x^1/3*z^2/t^1/2)j+[-x^1/3*t^2/z*y^1/2]k find the components of acceleration for the system.
Velocity field for this system is: V=[X^2-(y*z^1/2/t)]i-[z*y^3+(x^1/3*z^2/t^1/2)j+[-x^1/3*t^2/z*y^1/2]k find the components of acceleration for the system.
Verify stokes theorem when S=(x,y,z): 9x^2+y^2=z^2 and 0 ≤z ≤2 and F(x,y,z)=0i+((9x^2)/2)j+((y^(3)*z)/3)k
Verify stokes theorem when S=(x,y,z): 9x^2+y^2=z^2 and 0 ≤z ≤2 and F(x,y,z)=0i+((9x^2)/2)j+((y^(3)*z)/3)k
Verify stokes theorem when S=(x,y,z): 9x^2+y^2=z^2 and 0 ≤z ≤2 and F(x,y,z)=0i+((9x^2)/2)j+((y^(3)*z)/3)k
Verify stokes theorem when S=(x,y,z): 9x^2+y^2=z^2 and 0 ≤z ≤2 and F(x,y,z)=0i+((9x^2)/2)j+((y^(3)*z)/3)k
Let F(x, y, z) = z tan^−1(y^2)i + z^3 ln(x^2 + 7)j + zk. Find the...
Let F(x, y, z) = z tan^−1(y^2)i + z^3 ln(x^2 + 7)j + zk. Find the flux of F across S, the part of the paraboloid x2 + y2 + z = 29 that lies above the plane z = 4 and is oriented upward.
Given a sequence x(n) for 0 ≤ n ≤ 3, where x(0)=4, x(1)=3, x(2)=2, and x(3)=1,...
Given a sequence x(n) for 0 ≤ n ≤ 3, where x(0)=4, x(1)=3, x(2)=2, and x(3)=1, evaluate your DFT X(k)
Let X and Y have the following joint distribution: X/Y 0 1 2 0 5/50 8/50...
Let X and Y have the following joint distribution: X/Y 0 1 2 0 5/50 8/50 1/50 2 10/50 1/50 5/50 4 10/50 10/50 0 Further, suppose σx = √(1664/625), σy = √(3111/2500) a) Find Cov(X,Y) b) Find p(X,Y) c) Find Cov(1-X, 10+Y) d) p(1-X, 10+Y), Hint: use c and find Var[1-X], Var[10+Y]
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT