Question

In: Physics

(1.) The electric field inside a parallel plate capacitor is E(t)=E0t3 where E0=100 N/C. If the...

(1.) The electric field inside a parallel plate capacitor is E(t)=E0t3 where E0=100 N/C. If the side length of the plates is l=10cm, what is the displacement current at t=4s

4.25x10-10 A

4.25x10-6 A

4.25x10-14 A

4.25x10-9 A

(1.B) A parallel plate capacitor is made of two circular plates of radius r and has a displacement current Id=3/t2As2. What is the magnitude of the electric field between the plates?

3/πr2ε0t N/C

-3/πr2ε0t N/C

-3/πr2ε0t2 N/C

3/πr2ε0t2 N/C

Solutions

Expert Solution

                                                                 

                                      

  


Related Solutions

1) Find the electric field inside a 10 microFarad parallel plate capacitor when connected to a...
1) Find the electric field inside a 10 microFarad parallel plate capacitor when connected to a 6V battery if the gap between the capacitor plates is filled with air and is 10mm apart. Repeat your calculation if the gap is filled with paper with a dielectric constant of 4?
1) A parallel plate capacitor is connected to a battery. The electric field between the plates...
1) A parallel plate capacitor is connected to a battery. The electric field between the plates is E. While still connected to the battery, we move the plates so that their plate separation is now twice as large. What is the electric field between the plates now? E/4. E. E/2. 4E. 2E. 2) A parallel plate capacitor with capacitance Co is fully charged. The plates are in the shape of a disk. If the diameter of the disk is doubled...
a parallel-plate capacitor is oriented horizontally and charged so that there is an electric field of...
a parallel-plate capacitor is oriented horizontally and charged so that there is an electric field of 50,000 V/m pointing up inside the gap of 1cm, which is filled with air. a.) With the charge on each plate remaining constant, the capacitor is immersed half-way in an oil of dielectric constant K=2.5 What is now the potential difference between the plates? b.) If on top of the oil, water (K=80) is poured to completely fill the upper part of the gap,...
you have a parallel-plate capacitor a.) determine the electric field between the plates if there is...
you have a parallel-plate capacitor a.) determine the electric field between the plates if there is a 120 V potential dofference across the plated and they are separated by 0.5 cm b.) A spark will jump if the magnitude of the electrix field between the plates exceeds 3.0x10^6 V/m when air separates the plates. what is the closest the plated can be place to esch ither without sparking c.) if a dialectric (k=2.5) is inserted between the plates how will...
Electric Potential (Parallel Plate Capacitor Potential Energy and Potential) A parallel plate capacitor has two terminals,...
Electric Potential (Parallel Plate Capacitor Potential Energy and Potential) A parallel plate capacitor has two terminals, one (+) and the other (-). When you move a test positive charge, q at uniform velocity from the negative terminal (Ui and Vi) to the positive terminal (Uf and Vf), work W = ΔU = qΔV is done on the charge, increasing the energy of the field by this amount. The work done by the field on the charge is – W. (V...
An electron is accelerated inside a parallel plate capacitor. The electron leaves the negative plate with...
An electron is accelerated inside a parallel plate capacitor. The electron leaves the negative plate with a negligible initial velocity and then after the acceleration it hits the positive plate with a final velocity β. The distance between the plates is 12.4 cm, and the voltage difference is 122 kV. Determine the final velocity β of the electron using classical mechanics. (The rest mass of the electron is 9.11×10-31 kg, the rest energy of the electron is 511 keV.) What...
An electron is accelerated inside a parallel plate capacitor. The electron leaves the negative plate with...
An electron is accelerated inside a parallel plate capacitor. The electron leaves the negative plate with a negligible initial velocity and then after the acceleration it hits the positive plate with a final velocity β. The distance between the plates is 16.5 cm, and the voltage difference is 149 kV. Determine the final velocity β of the electron using classical mechanics. (The rest mass of the electron is 9.11×10-31 kg, the rest energy of the electron is 511 keV.) What...
An electron is accelerated inside a parallel plate capacitor. The electron leaves the negative plate with...
An electron is accelerated inside a parallel plate capacitor. The electron leaves the negative plate with a negligible initial velocity and then after the acceleration it hits the positive plate with a final velocity β. The distance between the plates is 14.2 cm, and the voltage difference is 146 kV. Determine the final velocity β of the electron using classical mechanics. (The rest mass of the electron is 9.11×10-31 kg, the rest energy of the electron is 511 keV.) 7.559×10-1...
Choose true or false for each statement regarding a parallel plate capacitor.. true false  The electric field...
Choose true or false for each statement regarding a parallel plate capacitor.. true false  The electric field is dependent on the charge density on the plates. true false  The voltage of a disconnected charged capacitor increases when the plate area is increased. true false  The voltage of a connected charged capacitor decreases when the plates are brought closer together. Tries 0/2 Choose true or false for each statement regarding capacitors in a circuit. true false  If you connect two different capacitors in series in...
A uniform electric field pointing in the positive y-direction with E = 100 N/C, fills the...
A uniform electric field pointing in the positive y-direction with E = 100 N/C, fills the region between two parallel plates.  The horizontal length of the plates is 60 cm. A charged particle with charge Q = - 3.2  x 10-19 C and mass 1.8  x 10-30  Kg, enters the region of constant electric field from the left with an initial velocity v = 9 x106 m/s in the positive x-direction. What is the magnitude of the velocity of the charged particle when it...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT