Question

In: Advanced Math

Let A be an n × n matrix which is not 0 but A2 = 0....

Let A be an n × n matrix which is not 0 but A2 = 0. Let I be the identity matrix.

a)Show that A is not diagonalizable.

b)Show that A is not invertible.

c)Show that I-A is invertible and find its inverse.

Solutions

Expert Solution


Related Solutions

Q. Let A be a real n×n matrix. (a) Show that A =0 if AA^T =0....
Q. Let A be a real n×n matrix. (a) Show that A =0 if AA^T =0. (b) Show that A is symmetric if and only if A^2= AA^T
Let A be a diagonalizable n × n matrix and let P be an invertible n...
Let A be a diagonalizable n × n matrix and let P be an invertible n × n matrix such that B = P−1AP is the diagonal form of A. Prove that Ak = PBkP−1, where k is a positive integer. Use the result above to find the indicated power of A. A = 6 0 −4 7 −1 −4 6 0 −4 , A5 A5 =
Let A be a diagonalizable n × n matrix and let P be an invertible n...
Let A be a diagonalizable n × n matrix and let P be an invertible n × n matrix such that B = P−1AP is the diagonal form of A. Prove that Ak = PBkP−1, where k is a positive integer. Use the result above to find A5 A = 4 0 −4 5 −1 −4 6 0 −6
Let A be some m*n matrix. Consider the set S = {z : Az = 0}....
Let A be some m*n matrix. Consider the set S = {z : Az = 0}. First show that this is a vector space. Now show that n = p+q where p = rank(A) and q = dim(S). Here is how to do it. Let the vectors x1, . . . , xp be such that Ax1, . . . ,Axp form a basis of the column space of A (thus each x can be chosen to be some unit...
Let A be an m × n matrix and B be an m × p matrix....
Let A be an m × n matrix and B be an m × p matrix. Let C =[A | B] be an m×(n + p) matrix. (a) Show that R(C) = R(A) + R(B), where R(·) denotes the range of a matrix. (b) Show that rank(C) = rank(A) + rank(B)−dim(R(A)∩R(B)).
Let v1 be an eigenvector of an n×n matrix A corresponding to λ1, and let v2,...
Let v1 be an eigenvector of an n×n matrix A corresponding to λ1, and let v2, v3 be two linearly independent eigenvectors of A corresponding to λ2, where λ1 is not equal to λ2. Show that v1, v2, v3 are linearly independent.
Let 3x3 matrix A = -3 0 -4                               0 5 0        &nb
Let 3x3 matrix A = -3 0 -4                               0 5 0                              -4 0 3 a) Find the eigenvalues of A and list their multiplicities. b) Find a basis, Bi, for each eigenspace, E(i). c) If possible, diagonalise matrix A. (i.e find matrices P and D such that Pinv AP = D is diagonal).
Let A be a real n × n matrix, and suppose that every leading principal submatrix...
Let A be a real n × n matrix, and suppose that every leading principal submatrix ofA of order k < n is nonsingular. Show that A has an LU-factorisation.
Let A ∈ Mat n×n(R) be a real square matrix. (a) Suppose that A is symmetric,...
Let A ∈ Mat n×n(R) be a real square matrix. (a) Suppose that A is symmetric, positive semi-definite, and orthogonal. Prove that A is the identity matrix. (b) Suppose that A satisfies A = −A^T . Prove that if λ ∈ C is an eigenvalue of A, then λ¯ = −λ. From now on, we assume that A is idempotent, i.e. A^2 = A. (c) Prove that if λ is an eigenvalue of A, then λ is equal to 0...
Let A be an n × n real symmetric matrix with its row and column sums...
Let A be an n × n real symmetric matrix with its row and column sums both equal to 0. Let λ1, . . . , λn be the eigenvalues of A, with λn = 0, and with corresponding eigenvectors v1,...,vn (these exist because A is real symmetric). Note that vn = (1, . . . , 1). Let A[i] be the result of deleting the ith row and column. Prove that detA[i] = (λ1···λn-1)/n. Thus, the number of spanning...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT