Question

In: Physics

is the torque on a current carrying coil in a uniform magnetic field always zero?

is the torque on a current carrying coil in a uniform magnetic field always zero?

Solutions

Expert Solution

This question is based on the article " coil in uniform magnetic field". Here formula of torque is used to find the condition when torque can be zero


Related Solutions

   A flat coil of wire is placed in a uniform magnetic field that is in the...
   A flat coil of wire is placed in a uniform magnetic field that is in the y direction. (i) The magnetic flux through the coil is maximum if the coil is (a) in the xy plane(b) in either the xy or the yz plane (c) in the xz plane (d) in any orientation, because it is constant. (ii) For what orientation is the flux zero? Choose from the same possibilities.
A rectangular coil with N turns and area A is place in a uniform magnetic field...
A rectangular coil with N turns and area A is place in a uniform magnetic field directed into y-direction. (a) What amount of emf is induced in the coil if the coil doesn’t move or rotate? . Let’s say the coil rotates about the z-axis through its center at a constant angular velocity LaTeX: \omegaω. (b) What would be total magnetic flux through the coil as a function of LaTeX: \thetaθ ? (LaTeX: \thetaθ is the angle between the directions...
A square coil of wire of side 3.00 cm is placed in a uniform magnetic field...
A square coil of wire of side 3.00 cm is placed in a uniform magnetic field of magnitude 1.75 T directed into the page as in the figure shown below. The coil has 38.0 turns and a resistance of 0.780 Ω. If the coil is rotated through an angle of 90.0° about the horizontal axis shown in 0.335 s, find the following. (a) the magnitude of the average emf induced in the coil during this rotation (b) the average current...
3.12. A rectangular coil of wire is suspended in a uniform radial magnetic field of induction...
3.12. A rectangular coil of wire is suspended in a uniform radial magnetic field of induction 0.05 T, the field lines being horizontal. The coil consists of 400 turns of wire each of height 2 cm and width 1 cm. If a current of 1 mA is passed through the coil, calculate:- (a) the force acting on unit length of the wire in one of the vertical sides of the coil; (b) the total force on one vertical side of...
Consider a single coil carrying a current I. a. What are the electric and magnetic fields...
Consider a single coil carrying a current I. a. What are the electric and magnetic fields at the center of the coil? b. Now suppose the coil is moving at a speed v perpendicular to its axis. What are the electric and magnetic fields at the center of the coil? c. What is the physical origin of the electric field you just found? Where are the charges?
Create a diagram of a current-carrying wire in a magnetic field. Draw the field lines and...
Create a diagram of a current-carrying wire in a magnetic field. Draw the field lines and explain how the direction of force acting on the wire is determined. #- Create a sketch of the experiment Michael Faraday performed, label all the parts, and write a brief explanation of how motion is created. thank you
A circular coil (830 turns, radius = 0.087 m) is rotating in a uniform magnetic field....
A circular coil (830 turns, radius = 0.087 m) is rotating in a uniform magnetic field. At t = 0 s, the normal to the coil is perpendicular to the magnetic field. At t = 0.021 s, the normal makes an angle of 45o with the field because the coil has made one-eighth of a revolution. An average emf of magnitude 0.075 V is induced in the coil. Find the magnitude of the magnetic field at the location of the...
A 123 turn circular coil of radius 2.27 cm is immersed in a uniform magnetic field...
A 123 turn circular coil of radius 2.27 cm is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. Over an interval of 0.167 s , the magnetic field strength increases from 54.5 mT to 94.1 mT . Find the magnitude of the average emf avg induced in the coil during this time interval, in millivolts.
What is the magnitude of the magnetic field B at the centre of the coil?
A circular coil of wire consisting of 100 turns, each of radius 8.0 cm carries a current of 0.40 A. What is the magnitude of the magnetic field B at the centre of the coil?
The magnetic field at a distance ro from a long straight wire carrying a current I...
The magnetic field at a distance ro from a long straight wire carrying a current I is given by B=u0I/2PI ro . For the statements below, circle the word or phrase that correctly completes the sentence. A) For a fixed current of 3.00 A in the wire, the magnetic field sensed by a Hall probe will _________________ if the distance r0is changed from 0.6 cm to 1.2 cm. (double, triple, reduce to half, reduce by 0.6 mT) B) If the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT