In: Math
Here are summary statistics for randomly selected weights of newborn girls: n=164, x=28.7 hg, s=6.3 hg. Construct a confidence interval estimate of the mean. Use a 95% confidence level. Are these results very different from the confidence interval 28.0< μ <29.8 hg with only 19 sample values, x=28.9 hg, and s=1.8 hg?
What is the confidence interval for the population mean?
Level of Significance ,    α =   
0.05          
degree of freedom=   DF=n-1=   163  
       
't value='   tα/2=   1.9746   [Excel
formula =t.inv(α/2,df) ]      
          
       
Standard Error , SE = s/√n =   6.3000   /
√   164   =   0.4919
margin of error , E=t*SE =   1.9746  
*   0.4919   =   0.9714
          
       
confidence interval is       
           
Interval Lower Limit = x̅ - E =    28.70  
-   0.971411   =   27.7286
Interval Upper Limit = x̅ + E =    28.70  
-   0.971411   =   29.6714
95%   confidence interval is (   27.7
< µ <   29.7 )
Yes, because the confidence interval limits are not similar.