In: Finance
Answer: Option d is correct
Given that present value of the terminal value that begins in 9
years is $10,000,000
Now, future value=present value*(1+interest rate)^Number of
years
Substituting the values, we get;
Future Value=10000000*(1+14%)^9=32519485.21
Given that, the cash flow at the beginning of the growing
perpetuity=3137860
The formula for terminal value=(Cash flow at the beginning of the
growing perpetuity)*(1+Growth rate)/(Cost of capital - Growth
rate)
Substituting the values, we get;
Terminal value=3137860/*(1+g)/(14%-g)
Equating the values, we get;
32519485.21=3137860/*(1+g)/(14%-g)
=>(14%-g)=3137860*(1+g)/32519485.21
=>(14%-g)=(3137860/32519485.21)*(1+g)
=>(14%-g)=(0.096491687)*(1+g)
=>14%=(0.096491687)*(1+g) + g
=>14%=(0.096491687)*1+(0.096491687)*g + g
=>14%=0.096491687+g*(1+0.096491687)
=>14%-0.096491687=g*(1.096491687)
=>0.043508313=g*(1.096491687)
=>0.043508313/(1.096491687) =g=0.039679565 or 3.97% or 4%
(Rounded to the nearest whole number)