Question

In: Advanced Math

(a) What is the maximum degree of a vertex in a simple graph with n vertices?...

(a) What is the maximum degree of a vertex in a simple graph with n vertices?

(b) What is the maximum number of edges in a simple graph of n vertices?

(c) Given a natural number n, does there exist a simple graph with n vertices and the maximum number of edges?

Solutions

Expert Solution


Related Solutions

Let Kn denote the simple graph on n vertices. (a) Let v be some vertex of...
Let Kn denote the simple graph on n vertices. (a) Let v be some vertex of Kn and consider K n − v, the graph obtained by deleting v. Prove that K n − v is isomorphic to K n−1 . (b) Use mathematical induction on n to prove the following statement: K n , the complete graph on n vertices, has n(n-1)/2 edges
Let G be a simple undirected graph with n vertices where n is an even number....
Let G be a simple undirected graph with n vertices where n is an even number. Prove that G contains a triangle if it has at least (n^2 / 4) + 1 edges using mathematical induction.
In a simple undirected graph H the sum of vertex degrees is 60. What is the...
In a simple undirected graph H the sum of vertex degrees is 60. What is the smallest possible number of vertices in this graph? What is the largest possible number of vertices in the graph?
An m × n grid graph has m rows of n vertices with vertices closest to...
An m × n grid graph has m rows of n vertices with vertices closest to each other connected by an edge. Find the greatest length of any path in such a graph, and provide a brief explanation as to why it is maximum. You can assume m, n ≥ 2. Please provide an explanation without using Hamilton Graph Theory.
find an alternative  definition of the degree of a vertex of a graph.  please be detailed...
find an alternative  definition of the degree of a vertex of a graph.  please be detailed as possible thank you
Use the fact that every planar graph with fewer than 12 vertices has a vertex of...
Use the fact that every planar graph with fewer than 12 vertices has a vertex of degree <= 4 to prove that every planar graph with than 12 vertices can be 4-colored.
A tree is a circuit-free connected graph. A leaf is a vertex of degree 1 in...
A tree is a circuit-free connected graph. A leaf is a vertex of degree 1 in a tree. Show that every tree T = (V, E) has the following properties: (a) There is a unique path between every pair of vertices. (b) Adding any edge creates a cycle. (c) Removing any edge disconnects the graph. (d) Every tree with at least two vertices has at least two leaves. (e) | V |=| E | +1.
Suppose that a graph G is such that each vertex of G has degree at least...
Suppose that a graph G is such that each vertex of G has degree at least 100. Show that G contains a cycle of length at least 101, i.e., a cycle passing through at least 101 vertices.
Prove or disprove the following statements. (a) There is a simple graph with 6 vertices with...
Prove or disprove the following statements. (a) There is a simple graph with 6 vertices with degree sequence (3, 3, 5, 5, 5, 5)? (b) There is a simple graph with 6 vertices with degree sequence (2, 3, 3, 4, 5, 5)?
let G be a simple graph. show that the relation R on the set of vertices...
let G be a simple graph. show that the relation R on the set of vertices of G such that URV if and only if there is an edge associated with (u,v) is a symmetric irreflexive relation on G
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT