In: Economics
Monopolistic firm has the inverse demand function p = 250 – 6Q. It’s total cost of production is C = 1250 + 10Q + 8Q2 :
1. Create a spreadsheet for Q = 1 to Q = 20 in increments of 1. Determine the profit-maximizing output and price for the firm and the consequent level of profit.
2. Will the firm continue the production at the profit-maximizing level of output? Show why or why not?
3. Calculate the Lerner Index of monopoly power for each output level and verify its relationship with the value of the price elasticity of demand at the profit-maximizing level of output.
4. Suppose that a specific tax of 10 per unit is imposed on the monopoly. What is the effect on the monopoly’s profit-maximizing price?
Q | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
P | 244 | 238 | 232 | 226 | 220 | 214 | 208 | 202 | 196 | 190 | 184 | 178 | 172 | 166 | 160 | 154 | 148 | 142 | 136 | 130 |
C | 1268 | 1302 | 1352 | 1418 | 1500 | 1598 | 1712 | 1842 | 1988 | 2150 | 2328 | 2522 | 2732 | 2958 | 3200 | 3458 | 3732 | 4022 | 4328 | 4650 |
Profit = PQ - C | -1024 | -826 | -656 | -514 | -400 | -314 | -256 | -226 | -224 | -250 | -304 | -386 | -496 | -634 | -800 | -994 | -1216 | -1466 | -1744 | -2050 |
Loss is minimized at Q=9, i.e. loss of 224. Hence, profit is maximized at Q=9.
2. The firm will not produce at this level because it is ultimately a loss making proposition, and hence the firm will have to shut down.
3. To calculate L, we have the following excel:
Q | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
P | 244 | 238 | 232 | 226 | 220 | 214 | 208 | 202 | 196 | 190 | 184 | 178 | 172 | 166 | 160 | 154 | 148 | 142 | 136 | 130 |
C | 1268 | 1302 | 1352 | 1418 | 1500 | 1598 | 1712 | 1842 | 1988 | 2150 | 2328 | 2522 | 2732 | 2958 | 3200 | 3458 | 3732 | 4022 | 4328 | 4650 |
Profit = PQ - C | -1024 | -826 | -656 | -514 | -400 | -314 | -256 | -226 | -224 | -250 | -304 | -386 | -496 | -634 | -800 | -994 | -1216 | -1466 | -1744 | -2050 |
MC = CQ+1 - CQ | 34 | 50 | 66 | 82 | 98 | 114 | 130 | 146 | 162 | 178 | 194 | 210 | 226 | 242 | 258 | 274 | 290 | 306 | 322 | |
L = (P-MC)/P | 0.857143 | 0.784483 | 0.707964602 | 0.627272727 | 0.542056 | 0.451923 | 0.35643564 | 0.255102 | 0.147368 | 0.032609 | -0.08989 | -0.22093 | -0.36145 | -0.5125 | -0.67532 | -0.85135 | -1.04225 | -1.25 | -1.47692 |
At Q=9, (Change in Quantity/Quantity) / (Change in Price/Price) = 1/8 / -6/196 = -4.1
But,
So, 1/ |E| = .25 = L calculated
4. After imposing a specific tax, price increases by 10, and hence following excel is reached:
Q | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
P | 254 | 248 | 242 | 236 | 230 | 224 | 218 | 212 | 206 | 200 | 194 | 188 | 182 | 176 | 170 | 164 | 158 | 152 | 146 | 140 |
C | 1268 | 1302 | 1352 | 1418 | 1500 | 1598 | 1712 | 1842 | 1988 | 2150 | 2328 | 2522 | 2732 | 2958 | 3200 | 3458 | 3732 | 4022 | 4328 | 4650 |
Profit = PQ - C | -1014 | -806 | -626 | -474 | -350 | -254 | -186 | -146 | -134 | -150 | -194 | -266 | -366 | -494 | -650 | -834 | -1046 | -1286 | -1554 | -1850 |
Here too, profit maximizing Quantity is same, and hence price increases to 206 apiece.