In: Statistics and Probability
Complete parts (a) through (c) using the following data.
Row 1 1 2 2 2 2 2 6 6 6 8
Row 2 94 85 86 71 94 65 74 87 60 62
(a) Find the equation of the regression line for the given data, letting Row 1 represent thex-values and Row 2 the y-values. Sketch a scatter plot of the data and draw the regression line.
Input the values of the slope and intercept for the regression line when Row 1 represents the x-values.
.
y =_____ x+ ( __ , __ ) (Round to three decimal places as needed.)
(b) Find the equation of the regression line for the given data, letting Row 2 represent the x-values and Row 1 the y-values. Sketch a scatter plot of the data and draw the regression line.
c) Construct a residual plot.
(d) Determine if there are any patterns in the residual plot and explain what they suggest about the relationship between the variables. Choose the best answer in the parenthesis.
The residual plot (shows, or does not show ) a pattern because the residuals ( fluctuate or ,do not fluctuate)about 0. This implies the regression line ( is or is not)
a good representation of the relationship between the variables.
We use Minitab to solve this question.
MTB > Regress;
SUBC> Response 'Row2';
SUBC> Nodefault;
SUBC> Continuous 'Row1';
SUBC> Terms Row1;
SUBC> Constant;
SUBC> Unstandardized;
SUBC> Tmethod;
SUBC> Tanova;
SUBC> Tcoefficients;
SUBC> Tequation.
Regression Analysis: Row2 versus Row1
Analysis of Variance
Source DF Adj SS
Adj MS F-Value P-Value
Regression 1 459.8
459.76 3.47 0.099
Row1
1 459.8 459.76
3.47 0.099
Error 8
1059.8 132.48
Lack-of-Fit 2 132.4
66.19 0.43 0.670
Pure Error 6 927.5 154.58
Total 9
1519.6
Coefficients
Term Coef SE Coef T-Value
P-Value VIF
Constant 88.39 6.75
13.09 0.000
Row1 -2.86
1.54 -1.86 0.099 1.00
Regression Equation
Row2 = 88.390 - 2.860 Row1
MTB > Regress;
SUBC> Response 'Row1';
SUBC> Nodefault;
SUBC> Continuous 'Row2';
SUBC> Terms Row2;
SUBC> Constant;
SUBC> Unstandardized;
SUBC> Gnormal;
SUBC> Gfits;
SUBC> Gorder;
SUBC> Tmethod;
SUBC> Tanova;
SUBC> Tcoefficients;
SUBC> Tequation.
Regression Analysis: Row1 versus Row2
Analysis of Variance
Source
DF Adj SS Adj MS F-Value P-Value
Regression 1 16.9731
16.9731 3.47 0.099
Row2 1
16.9731 16.9731 3.47
0.099
Error 8
39.1269 4.8909
Lack-of-Fit 7 38.6269
5.5181 11.04 0.228
Pure Error 1 0.5000
0.5000
Total 9
56.1000
Coefficients
Term Coef SE
Coef T-Value P-Value VIF
Constant 11.92
4.47 2.67 0.028
Row2 -0.1057
0.0567 -1.86 0.099 1.00
Regression Equation
Row1 = 11.920 - 0.106 Row2
Normplot of Residuals for Row1
Residuals vs Fits for Row1
Residuals vs Order for Row1
MTB > Plot 'Row1'*'Row2';
SUBC> Symbol;
SUBC> Regress.
Scatterplot of Row1 vs Row2
MTB > Plot 'Row2'*'Row1';
SUBC> Symbol;
SUBC> Regress.
Scatterplot of Row2 vs Row1
d)
The residual plot shows a pattern because the residuals fluctuate about 0 this implies the regression line is a good representation of the relationship between the variables.