Question

In: Statistics and Probability

Complete parts​ (a) through​ (c) using the following data. Row 1 1 2 2 2 2...

Complete parts​ (a) through​ (c) using the following data.

Row 1 1 2 2 2 2 2 6 6 6 8

Row 2 94 85 86 71 94 65 74 87 60 62

​(a) Find the equation of the regression line for the given​ data, letting Row 1 represent the​x-values and Row 2 the​ y-values. Sketch a scatter plot of the data and draw the regression line.

Input the values of the slope and intercept for the regression line when Row 1 represents the​ x-values.

.

y =_____ x+ ( __ , __ ) (Round to three decimal places as​ needed.)

​(b) Find the equation of the regression line for the given​ data, letting Row 2 represent the​ x-values and Row 1 the​ y-values. Sketch a scatter plot of the data and draw the regression line.

c) Construct a residual plot.

​(d) Determine if there are any patterns in the residual plot and explain what they suggest about the relationship between the variables. Choose the best answer in the parenthesis.

The residual plot (shows, or does not show ) a pattern because the residuals ( fluctuate or ,do not fluctuate)about 0. This implies the regression line ( is or is not)

a good representation of the relationship between the variables.

Solutions

Expert Solution

We use Minitab to solve this question.

MTB > Regress;
SUBC>   Response 'Row2';
SUBC>   Nodefault;
SUBC>   Continuous 'Row1';
SUBC>   Terms Row1;
SUBC>   Constant;
SUBC>   Unstandardized;
SUBC>   Tmethod;
SUBC>   Tanova;
SUBC>   Tcoefficients;
SUBC>   Tequation.

Regression Analysis: Row2 versus Row1

Analysis of Variance

Source         DF Adj SS Adj MS F-Value P-Value
Regression      1   459.8 459.76     3.47    0.099
Row1          1   459.8 459.76     3.47    0.099
Error           8 1059.8 132.48
Lack-of-Fit   2   132.4   66.19     0.43    0.670
Pure Error    6   927.5 154.58
Total           9 1519.6


Coefficients

Term       Coef SE Coef T-Value P-Value   VIF
Constant 88.39     6.75    13.09    0.000
Row1      -2.86     1.54    -1.86    0.099 1.00


Regression Equation

Row2 = 88.390 - 2.860 Row1

MTB > Regress;
SUBC>   Response 'Row1';
SUBC>   Nodefault;
SUBC>   Continuous 'Row2';
SUBC>   Terms Row2;
SUBC>   Constant;
SUBC>   Unstandardized;
SUBC>   Gnormal;
SUBC>   Gfits;
SUBC>   Gorder;
SUBC>   Tmethod;
SUBC>   Tanova;
SUBC>   Tcoefficients;
SUBC>   Tequation.

Regression Analysis: Row1 versus Row2

Analysis of Variance

Source         DF   Adj SS   Adj MS F-Value P-Value
Regression      1 16.9731 16.9731     3.47    0.099
Row2          1 16.9731 16.9731     3.47    0.099
Error           8 39.1269   4.8909
Lack-of-Fit   7 38.6269   5.5181    11.04    0.228
Pure Error    1   0.5000   0.5000
Total           9 56.1000


Coefficients

Term         Coef SE Coef T-Value P-Value   VIF
Constant    11.92     4.47     2.67    0.028
Row2      -0.1057   0.0567    -1.86    0.099 1.00


Regression Equation

Row1 = 11.920 - 0.106 Row2


Normplot of Residuals for Row1


Residuals vs Fits for Row1


Residuals vs Order for Row1

MTB > Plot 'Row1'*'Row2';
SUBC>   Symbol;
SUBC>   Regress.

Scatterplot of Row1 vs Row2

MTB > Plot 'Row2'*'Row1';
SUBC>   Symbol;
SUBC>   Regress.

Scatterplot of Row2 vs Row1

d)

The residual plot shows a pattern because the residuals fluctuate about 0 this implies the regression line is a good representation of the relationship between the variables.


Related Solutions

Complete parts​ (a) through​ (c) using the following data. Row 1 Row 2 2 93 2...
Complete parts​ (a) through​ (c) using the following data. Row 1 Row 2 2 93 2 87 2 79 5 78 5 95 5 66 6 74 6 84 7 56 8 62 (a) Find the equation of the regression line for the given​ data, letting Row 1 represent the​ x-values and Row 2 the​ y-values. Sketch a scatter plot of the data and draw the regression line. Input the values of the slope and intercept for the regression line...
Complete parts​ (a) through​ (c) using the following data. Row 1 2 2 2 5 5...
Complete parts​ (a) through​ (c) using the following data. Row 1 2 2 2 5 5 5 5 6 7 7 Row 2 92 82 83 79 90 73 79 82 59 70 ​ Construct a scatter plot of the data and draw the regression line. Plot Row 1 on the horizontal axis and Row 2 on the vertical axis. (a) Find the equation of the regression line for the given​ data, letting Row 1 represent the​ x-values and Row...
Complete parts (a) through (c) using the following data. Row 1: 1 3 3 4 4...
Complete parts (a) through (c) using the following data. Row 1: 1 3 3 4 4 4 5 6 6 7 Row 2: 90 82 76 76 90 72 80 90 55 70 A.) Find the equation of the regression line for the given data, letting Row 1 represent the x-values and Row 2 the y-values. Sketch a scatter plot of the data and draw the regression line. Input the values of the slope and intercept for the regression line...
Use the data in the table below to complete parts (a) through (c). X: 5 5...
Use the data in the table below to complete parts (a) through (c). X: 5 5 6 9 13 16 18 48 Y: 30 27 18 23 25 20 21 10 A.) Construct a scatterplot of the data. B.) Indentify any possible outliners. A.) The point (18,21) may be an outliner. B.) The point (48,10) may be an outliner C.) The point (5,27) may be an outliner. D.) The point (5,30) may be an outliner E.) There are no outliners....
Consider the following set of ordered pairs. Complete parts a through c. x 1 1 3...
Consider the following set of ordered pairs. Complete parts a through c. x 1 1 3 3 1    y −1 1 4 3 −1 a. Calculate the slope and​ y-intercept for these data. ^y=______ + (______) x ​(Round to four decimal places as​ needed.) b. Calculate the total sum of squares​ (SST). SST= ​(Round to one decimal place as​ needed.) c. Partition the sum of squares into the SSR and SSE. SSE= ​(Round to three decimal places as​ needed.)...
1) Use the following information from a multiple regression analysis to complete parts​ (a) through​ (c)...
1) Use the following information from a multiple regression analysis to complete parts​ (a) through​ (c) below. n =25    b1 =30    b 2 =10    Sb1=8    Sb 2 =6 b) Construct a​ 95% confidence interval estimate of the population​ slope, β1. ____≤β1≤_____ ​(Round to four decimal places as​ needed.) c) At the 0.05 level of​ significance, determine whether each independent variable makes a significant contribution to the regression model. On the basis of these​ results, indicate the independent variables to include...
Use the given data set to complete parts (a) through (c) below. (Use α = 0.05.)
Use the given data set to complete parts (a) through (c) below. (Use α = 0.05.) x1081391114641275y9.148.158.748.779.278.116.123.099.147.254.73Click here to view a table of critical values for the correlation coefficient. b. Find the linear correlation coefficient, r, then determine whether there is sufficient evidence to support the claim of a linear correlation between the two variables. The linear correlation coefficient is r= _______ (Round to three decimal places as needed.) Using the linear correlation coefficient found in the previous step, determine whether there is sufficient...
For the data and sample regression equation shown​ below, complete parts​ (a) through​ (c). x 0...
For the data and sample regression equation shown​ below, complete parts​ (a) through​ (c). x 0 3 5 5 5      ModifyingAbove y with caret equals 4.500 minus 0.917 xy=4.500−0.917x y 4 3 0 −2 1 a. Determine the standard error of the estimate. b. Construct a residual plot. c. Construct a normal probability plot of the residuals. LOADING... Click the icon to view the table of normal scores.
5. Use the given data set to complete parts​ (a) through​ (c) below.​ (Use a=0.05.) x             ...
5. Use the given data set to complete parts​ (a) through​ (c) below.​ (Use a=0.05.) x              y 10           7.45 8              6.77 13           12.75 9              7.11 11           7.81 14           8.84 6              6.08 4              5.39 12           8.14 7              6.43 5              5.73 a. Construct a scatterplot Find the linear correlation​ coefficient, r, then determine whether there is sufficient evidence to support the claim of a linear correlation between the two variables. The linear correlation coefficient is r=_____. ​(Round to three decimal places as​...
Use the given data set to complete parts (a) through (c) below. (Use alphaαequals= 0.05.) x...
Use the given data set to complete parts (a) through (c) below. (Use alphaαequals= 0.05.) x 10 8 13 9 11 14 6 4 12 7 5 y 7.45 6.77 12.75 7.11 7.82 8.83 6.07 5.39 8.15 6.43 5.74 Find the linear correlation coefficient, r, then determine whether there is sufficient evidence to support the claim of a linear correlation between the two variables. The linear correlation coefficient is r=
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT