Question

In: Finance

Complete parts​ (a) through​ (c) using the following data. Row 1 Row 2 2 93 2...

Complete parts​ (a) through​ (c) using the following data.

Row 1 Row 2

2 93

2 87

2 79

5 78

5 95

5 66

6 74

6 84

7 56

8 62

(a) Find the equation of the regression line for the given​ data, letting Row 1 represent the​ x-values and Row 2 the​ y-values. Sketch a scatter plot of the data and draw the regression line.

Input the values of the slope and intercept for the regression line when Row 1 represents the​ x-values.

y =_____x+ ( _____ )

​(Round to three decimal places as​ needed.)

Construct a scatter plot of the data and draw the regression line. Plot Row 1 on the horizontal axis and Row 2 on the vertical axis.

​(b) Find the equation of the regression line for the given​ data, letting Row 2 represent the​ x-values and Row 1 the​ y-values. Sketch a scatter plot of the data and draw the regression line.

Input the values of the slope and intercept for the regression line when Row 2 represents the​ x-values.

y = ______ x+ ( _____ )

​(Round to three decimal places as​ needed.)

Construct a scatter plot of the data and draw the regression line. Plot Row 2 on the horizontal axis and Row 1 on the vertical axis. Choose the correct graph below.

​(c) What effect does switching the explanatory and response variables have on the regression​ line? Choose the right answer below

A.The sign of m is​ unchanged, but the values of m and b change.

B.The sign and value of m is​ unchanged, but the value of b changes.

C.The value of b is​ unchanged, but the sign and value of m change.

D.The value of m is​ unchanged, but the sign of m and value of b change.

E.The sign and value of m and the value of b all change.

F.Nothing changes.

Solutions

Expert Solution

X Y Yr=-3.995X+96.577
Row1 Row2(Y axis) ROW 1 Regression Line
2 93 2 88.587
2 87 2 88.587
2 79 2 88.587
5 78 5 76.602
5 95 5 76.602
5 66 5 76.602
6 74 6 72.607
6 84 6 72.607
7 56 7 68.612
8 62 8 64.617
(a)
Row1 Xaxis
Row2-Y axis
EQUATION:
Y=mX+b
m=Slope
b=intercept
Using "Regression "tool of Data analyis:
(Click "Data" , then click "Data Analysis".Select "Regression")
Input Y range Row2,Input X range Row 1, then click "OK"
We get the following output
SUMMARY OUTPUT
Regression Statistics
Multiple R 0.65912205
R Square 0.43444187
Adjusted R Square 0.36374711
Standard Error 10.3947044
Observations 10
ANOVA
df SS MS F Significance F
Regression 1 664.001 664.001 6.145319 0.038173
Residual 8 864.399 108.0499
Total 9 1528.4
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 96.5769231 8.405236 11.49009 2.98E-06 77.19441 115.9594 77.19441 115.9594
X Variable 1 -3.9951923 1.611631 -2.47898 0.038173 -7.71162 -0.27877 -7.71162 -0.27877
X variable 1= Slope=m -3.995192308
Intercept=b= 96.57692308
EQUATION:
Y=-3.995X+96.577
(b) Row2 Xaxis
Row1-Y axis
EQUATION:
Y=mX+b
m=Slope
b=intercept
X Y Xr Yr=-0.109Xr+13.217
Row2 Row1(Y Axis) Row2 Regression Line
93 2 56 7.113
87 2 62 6.459
79 2 66 6.023
78 5 74 5.151
95 5 78 4.715 `
66 5 79 4.606
74 6 84 4.061
84 6 87 3.734
56 7 93 3.080
62 8 95 2.862
Using Regression toolof Data Analysis
Input Y range Row1,Input X range Row 2, then click "OK"
SUMMARY OUTPUT
Regression Statistics
Multiple R 0.65912205
R Square 0.43444187
Adjusted R Square 0.36374711
Standard Error 1.7149059
Observations 10
ANOVA
df SS MS F Significance F
Regression 1 18.07278 18.07278 6.145319 0.038173
Residual 8 23.52722 2.940902
Total 9 41.6
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 13.2165663 3.438217 3.844018 0.004919 5.288024 21.14511 5.288024 21.14511
X Variable 1 -0.1087412 0.043865 -2.47898 0.038173 -0.20989 -0.00759 -0.20989 -0.00759
X variable 1= Slope=m -0.108741167
Intercept=b= 13.21656634
EQUATION:
Y=-0.109X+13.217
.(c) A.The sign of m is​ unchanged, but the values of m and b change.
X Y Sign of m Value of m Value of b
Row 1 Row 2 Negative 3.99519231 96.57692
Row 2 Row 1 Negative 0.10874117 13.21657



Related Solutions

Complete parts​ (a) through​ (c) using the following data. Row 1 1 2 2 2 2...
Complete parts​ (a) through​ (c) using the following data. Row 1 1 2 2 2 2 2 6 6 6 8 Row 2 94 85 86 71 94 65 74 87 60 62 ​(a) Find the equation of the regression line for the given​ data, letting Row 1 represent the​x-values and Row 2 the​ y-values. Sketch a scatter plot of the data and draw the regression line. Input the values of the slope and intercept for the regression line when...
Complete parts​ (a) through​ (c) using the following data. Row 1 2 2 2 5 5...
Complete parts​ (a) through​ (c) using the following data. Row 1 2 2 2 5 5 5 5 6 7 7 Row 2 92 82 83 79 90 73 79 82 59 70 ​ Construct a scatter plot of the data and draw the regression line. Plot Row 1 on the horizontal axis and Row 2 on the vertical axis. (a) Find the equation of the regression line for the given​ data, letting Row 1 represent the​ x-values and Row...
Complete parts (a) through (c) using the following data. Row 1: 1 3 3 4 4...
Complete parts (a) through (c) using the following data. Row 1: 1 3 3 4 4 4 5 6 6 7 Row 2: 90 82 76 76 90 72 80 90 55 70 A.) Find the equation of the regression line for the given data, letting Row 1 represent the x-values and Row 2 the y-values. Sketch a scatter plot of the data and draw the regression line. Input the values of the slope and intercept for the regression line...
Use the data in the table below to complete parts (a) through (c). X: 5 5...
Use the data in the table below to complete parts (a) through (c). X: 5 5 6 9 13 16 18 48 Y: 30 27 18 23 25 20 21 10 A.) Construct a scatterplot of the data. B.) Indentify any possible outliners. A.) The point (18,21) may be an outliner. B.) The point (48,10) may be an outliner C.) The point (5,27) may be an outliner. D.) The point (5,30) may be an outliner E.) There are no outliners....
Consider the following set of ordered pairs. Complete parts a through c. x 1 1 3...
Consider the following set of ordered pairs. Complete parts a through c. x 1 1 3 3 1    y −1 1 4 3 −1 a. Calculate the slope and​ y-intercept for these data. ^y=______ + (______) x ​(Round to four decimal places as​ needed.) b. Calculate the total sum of squares​ (SST). SST= ​(Round to one decimal place as​ needed.) c. Partition the sum of squares into the SSR and SSE. SSE= ​(Round to three decimal places as​ needed.)...
1) Use the following information from a multiple regression analysis to complete parts​ (a) through​ (c)...
1) Use the following information from a multiple regression analysis to complete parts​ (a) through​ (c) below. n =25    b1 =30    b 2 =10    Sb1=8    Sb 2 =6 b) Construct a​ 95% confidence interval estimate of the population​ slope, β1. ____≤β1≤_____ ​(Round to four decimal places as​ needed.) c) At the 0.05 level of​ significance, determine whether each independent variable makes a significant contribution to the regression model. On the basis of these​ results, indicate the independent variables to include...
Use the given data set to complete parts (a) through (c) below. (Use α = 0.05.)
Use the given data set to complete parts (a) through (c) below. (Use α = 0.05.) x1081391114641275y9.148.158.748.779.278.116.123.099.147.254.73Click here to view a table of critical values for the correlation coefficient. b. Find the linear correlation coefficient, r, then determine whether there is sufficient evidence to support the claim of a linear correlation between the two variables. The linear correlation coefficient is r= _______ (Round to three decimal places as needed.) Using the linear correlation coefficient found in the previous step, determine whether there is sufficient...
For the data and sample regression equation shown​ below, complete parts​ (a) through​ (c). x 0...
For the data and sample regression equation shown​ below, complete parts​ (a) through​ (c). x 0 3 5 5 5      ModifyingAbove y with caret equals 4.500 minus 0.917 xy=4.500−0.917x y 4 3 0 −2 1 a. Determine the standard error of the estimate. b. Construct a residual plot. c. Construct a normal probability plot of the residuals. LOADING... Click the icon to view the table of normal scores.
5. Use the given data set to complete parts​ (a) through​ (c) below.​ (Use a=0.05.) x             ...
5. Use the given data set to complete parts​ (a) through​ (c) below.​ (Use a=0.05.) x              y 10           7.45 8              6.77 13           12.75 9              7.11 11           7.81 14           8.84 6              6.08 4              5.39 12           8.14 7              6.43 5              5.73 a. Construct a scatterplot Find the linear correlation​ coefficient, r, then determine whether there is sufficient evidence to support the claim of a linear correlation between the two variables. The linear correlation coefficient is r=_____. ​(Round to three decimal places as​...
Use the given data set to complete parts (a) through (c) below. (Use alphaαequals= 0.05.) x...
Use the given data set to complete parts (a) through (c) below. (Use alphaαequals= 0.05.) x 10 8 13 9 11 14 6 4 12 7 5 y 7.45 6.77 12.75 7.11 7.82 8.83 6.07 5.39 8.15 6.43 5.74 Find the linear correlation coefficient, r, then determine whether there is sufficient evidence to support the claim of a linear correlation between the two variables. The linear correlation coefficient is r=
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT