In: Finance
Complete parts (a) through (c) using the following data.
Row 1 Row 2
2 93
2 87
2 79
5 78
5 95
5 66
6 74
6 84
7 56
8 62
(a) Find the equation of the regression line for the given data, letting Row 1 represent the x-values and Row 2 the y-values. Sketch a scatter plot of the data and draw the regression line.
Input the values of the slope and intercept for the regression line when Row 1 represents the x-values.
y =_____x+ ( _____ )
(Round to three decimal places as needed.)
Construct a scatter plot of the data and draw the regression line. Plot Row 1 on the horizontal axis and Row 2 on the vertical axis.
(b) Find the equation of the regression line for the given data, letting Row 2 represent the x-values and Row 1 the y-values. Sketch a scatter plot of the data and draw the regression line.
Input the values of the slope and intercept for the regression line when Row 2 represents the x-values.
y = ______ x+ ( _____ )
(Round to three decimal places as needed.)
Construct a scatter plot of the data and draw the regression line. Plot Row 2 on the horizontal axis and Row 1 on the vertical axis. Choose the correct graph below.
(c) What effect does switching the explanatory and response variables have on the regression line? Choose the right answer below
A.The sign of m is unchanged, but the values of m and b change.
B.The sign and value of m is unchanged, but the value of b changes.
C.The value of b is unchanged, but the sign and value of m change.
D.The value of m is unchanged, but the sign of m and value of b change.
E.The sign and value of m and the value of b all change.
F.Nothing changes.
X | Y | Yr=-3.995X+96.577 | ||||||||||||
Row1 | Row2(Y axis) | ROW 1 | Regression Line | |||||||||||
2 | 93 | 2 | 88.587 | |||||||||||
2 | 87 | 2 | 88.587 | |||||||||||
2 | 79 | 2 | 88.587 | |||||||||||
5 | 78 | 5 | 76.602 | |||||||||||
5 | 95 | 5 | 76.602 | |||||||||||
5 | 66 | 5 | 76.602 | |||||||||||
6 | 74 | 6 | 72.607 | |||||||||||
6 | 84 | 6 | 72.607 | |||||||||||
7 | 56 | 7 | 68.612 | |||||||||||
8 | 62 | 8 | 64.617 | |||||||||||
(a) | ||||||||||||||
Row1 Xaxis | ||||||||||||||
Row2-Y axis | ||||||||||||||
EQUATION: | ||||||||||||||
Y=mX+b | ||||||||||||||
m=Slope | ||||||||||||||
b=intercept | ||||||||||||||
Using "Regression "tool of Data analyis: | ||||||||||||||
(Click "Data" , then click "Data Analysis".Select "Regression") | ||||||||||||||
Input Y range Row2,Input X range Row 1, then click "OK" | ||||||||||||||
We get the following output | ||||||||||||||
SUMMARY OUTPUT | ||||||||||||||
Regression Statistics | ||||||||||||||
Multiple R | 0.65912205 | |||||||||||||
R Square | 0.43444187 | |||||||||||||
Adjusted R Square | 0.36374711 | |||||||||||||
Standard Error | 10.3947044 | |||||||||||||
Observations | 10 | |||||||||||||
ANOVA | ||||||||||||||
df | SS | MS | F | Significance F | ||||||||||
Regression | 1 | 664.001 | 664.001 | 6.145319 | 0.038173 | |||||||||
Residual | 8 | 864.399 | 108.0499 | |||||||||||
Total | 9 | 1528.4 | ||||||||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |||||||
Intercept | 96.5769231 | 8.405236 | 11.49009 | 2.98E-06 | 77.19441 | 115.9594 | 77.19441 | 115.9594 | ||||||
X Variable 1 | -3.9951923 | 1.611631 | -2.47898 | 0.038173 | -7.71162 | -0.27877 | -7.71162 | -0.27877 | ||||||
X variable 1= | Slope=m | -3.995192308 | ||||||||||||
Intercept=b= | 96.57692308 | |||||||||||||
EQUATION: | ||||||||||||||
Y=-3.995X+96.577 | ||||||||||||||
(b) | Row2 Xaxis | |||||||||||||
Row1-Y axis | ||||||||||||||
EQUATION: | ||||||||||||||
Y=mX+b | ||||||||||||||
m=Slope | ||||||||||||||
b=intercept | ||||||||||||||
X | Y | Xr | Yr=-0.109Xr+13.217 | |||||||||||
Row2 | Row1(Y Axis) | Row2 | Regression Line | |||||||||||
93 | 2 | 56 | 7.113 | |||||||||||
87 | 2 | 62 | 6.459 | |||||||||||
79 | 2 | 66 | 6.023 | |||||||||||
78 | 5 | 74 | 5.151 | |||||||||||
95 | 5 | 78 | 4.715 | ` | ||||||||||
66 | 5 | 79 | 4.606 | |||||||||||
74 | 6 | 84 | 4.061 | |||||||||||
84 | 6 | 87 | 3.734 | |||||||||||
56 | 7 | 93 | 3.080 | |||||||||||
62 | 8 | 95 | 2.862 | |||||||||||
Using Regression toolof Data Analysis | ||||||||||||||
Input Y range Row1,Input X range Row 2, then click "OK" | ||||||||||||||
SUMMARY OUTPUT | ||||||||||||||
Regression Statistics | ||||||||||||||
Multiple R | 0.65912205 | |||||||||||||
R Square | 0.43444187 | |||||||||||||
Adjusted R Square | 0.36374711 | |||||||||||||
Standard Error | 1.7149059 | |||||||||||||
Observations | 10 | |||||||||||||
ANOVA | ||||||||||||||
df | SS | MS | F | Significance F | ||||||||||
Regression | 1 | 18.07278 | 18.07278 | 6.145319 | 0.038173 | |||||||||
Residual | 8 | 23.52722 | 2.940902 | |||||||||||
Total | 9 | 41.6 | ||||||||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |||||||
Intercept | 13.2165663 | 3.438217 | 3.844018 | 0.004919 | 5.288024 | 21.14511 | 5.288024 | 21.14511 | ||||||
X Variable 1 | -0.1087412 | 0.043865 | -2.47898 | 0.038173 | -0.20989 | -0.00759 | -0.20989 | -0.00759 | ||||||
X variable 1= | Slope=m | -0.108741167 | ||||||||||||
Intercept=b= | 13.21656634 | |||||||||||||
EQUATION: | ||||||||||||||
Y=-0.109X+13.217 | ||||||||||||||
.(c) | A.The sign of m is unchanged, but the values of m and b change. | |||||||||||||
X | Y | Sign of m | Value of m | Value of b | ||||||||||
Row 1 | Row 2 | Negative | 3.99519231 | 96.57692 | ||||||||||
Row 2 | Row 1 | Negative | 0.10874117 | 13.21657 | ||||||||||
|