In: Statistics and Probability
Question 2
A study of a large production facility was undertaken to determine
the average time required to assemble a microchip. A random sample
of 15 assemblies produced a sample mean of 12.2 minutes with a
standard deviation of 2.4 minutes. Assuming that the assembly times
are normally distributed, construct a 95% confidence interval to
estimate the population mean assembly time. Use the following
template to answer the question.
I. Parameter of interest: …………………………………….
II. Point estimator: ………………..
III. Sampling distribution of the point estimator: ………………..
IV. Specify the formula for the 95% confidence interval estimator
for the parameter: …………………………………………………………….
V. Perform the necessary calculations and write down the lower and
upper limits of the confidence interval:
VI. Interpret the calculated confidence interval.
1) population mean assembly time
2) Point estimator: sample mean of 12.2 minutes
III.Standard Error , SE = s/√n =  
2.4000   / √    15   =  
0.6197
Sampling distribution of the point estimator: normally distributed , N ~(12.2 , 0.6197)
IV. confidence interval is x̅ ± critical value*s/√n
Level of Significance ,    α =   
0.05          
degree of freedom=   DF=n-1=   14  
       
't value='   tα/2=   2.145   [Excel
formula =t.inv(α/2,df) ]      
          
       
Standard Error , SE = s/√n =   2.4000   /
√   15   =   0.6197
margin of error , E=t*SE =   2.1448  
*   0.6197   =   1.3291
          
       
confidence interval is       
           
Interval Lower Limit = x̅ - E =    12.20  
-   1.329076   =   10.8709
Interval Upper Limit = x̅ + E =    12.20  
-   1.329076   =   13.5291
95%   confidence interval is (  
10.87   < µ <   13.53  
)
VI) there is 95% confidence that population mean assembly time lies within confidence interval